Cargando…

Assessing the COVID‐19 Impact on Air Quality: A Machine Learning Approach

The worldwide research initiatives on Corona Virus disease 2019 lockdown effect on air quality agree on pollution reduction, but the most reliable method to pollution reduction quantification is still in debate. In this paper, machine learning models based on a Gradient Boosting Machine algorithm ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Rybarczyk, Yves, Zalakeviciute, Rasa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995168/
https://www.ncbi.nlm.nih.gov/pubmed/33785973
http://dx.doi.org/10.1029/2020GL091202
Descripción
Sumario:The worldwide research initiatives on Corona Virus disease 2019 lockdown effect on air quality agree on pollution reduction, but the most reliable method to pollution reduction quantification is still in debate. In this paper, machine learning models based on a Gradient Boosting Machine algorithm are built to assess the outbreak impact on air quality in Quito, Ecuador. First, the precision of the prediction was evaluated by cross‐validation on the four years prelockdown, showing a high accuracy to estimate the real pollution levels. Then, the changes in pollution are quantified. During the full lockdown, air pollution decreased by −53 ± 2%, −45 ± 11%, −30 ± 13%, and −15 ± 9% for NO(2), SO(2), CO, and PM(2.5), respectively. The traffic‐busy districts were the most impacted areas of the city. After the transition to the partial relaxation, the concentrations have nearly returned to the levels as before the pandemic. The quantification of pollution drop is supported by an assessment of the prediction confidence.