Cargando…
Assessing the COVID‐19 Impact on Air Quality: A Machine Learning Approach
The worldwide research initiatives on Corona Virus disease 2019 lockdown effect on air quality agree on pollution reduction, but the most reliable method to pollution reduction quantification is still in debate. In this paper, machine learning models based on a Gradient Boosting Machine algorithm ar...
Autores principales: | Rybarczyk, Yves, Zalakeviciute, Rasa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995168/ https://www.ncbi.nlm.nih.gov/pubmed/33785973 http://dx.doi.org/10.1029/2020GL091202 |
Ejemplares similares
-
Deep Learning Approach for Assessing Air Quality During COVID-19 Lockdown in Quito
por: Chau, Phuong N., et al.
Publicado: (2022) -
Editorial: Statistical Learning for Predicting Air Quality
por: Rybarczyk, Yves Philippe, et al.
Publicado: (2022) -
Seasonal variations in PM(10) inorganic composition in the Andean city
por: Zalakeviciute, Rasa, et al.
Publicado: (2020) -
Machine learning analysis on the impacts of COVID-19 on India’s renewable energy transitions and air quality
por: Stephan, Thompson, et al.
Publicado: (2022) -
Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques
por: Zukaib, Umer, et al.
Publicado: (2023)