Cargando…
A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data
Somatic mutations are a large category of genetic variations, which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants (SNVs) could facilitate downstream analysis of tumorigenesis. Many computational methods have been developed to detect SNVs, but most require n...
Autores principales: | Mao, Yu-Fang, Yuan, Xi-Guo, Cun, Yu-Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Science Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995270/ https://www.ncbi.nlm.nih.gov/pubmed/33709636 http://dx.doi.org/10.24272/j.issn.2095-8137.2021.014 |
Ejemplares similares
-
Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing
por: Eboreime, Jordan, et al.
Publicado: (2016) -
BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing
por: Mafficini, Andrea, et al.
Publicado: (2016) -
Germline and somatic mutations in patients with multiple primary melanomas: a next generation sequencing study
por: Casula, Milena, et al.
Publicado: (2019) -
Pisces: an accurate and versatile variant caller for somatic and germline next-generation sequencing data
por: Dunn, Tamsen, et al.
Publicado: (2019) -
Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis
por: Andrikopoulou, Angeliki, et al.
Publicado: (2022)