Cargando…
Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD
PURPOSE: The purpose of this study was to evaluate the feasibility of assessing quantitative longitudinal fluid dynamics and total retinal fluid indices (TRFIs) with higher-order optical coherence tomography (OCT) for neovascular age-related macular degeneration (nAMD). METHODS: A post hoc image ana...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995350/ https://www.ncbi.nlm.nih.gov/pubmed/34003963 http://dx.doi.org/10.1167/tvst.10.3.29 |
_version_ | 1783669899957108736 |
---|---|
author | Ehlers, Justis P. Clark, Julie Uchida, Atsuro Figueiredo, Natalia Babiuch, Amy Talcott, Katherine E. Lunasco, Leina Le, Thuy K. Meng, Xiangyi Hu, Ming Reese, Jamie Srivastava, Sunil K. |
author_facet | Ehlers, Justis P. Clark, Julie Uchida, Atsuro Figueiredo, Natalia Babiuch, Amy Talcott, Katherine E. Lunasco, Leina Le, Thuy K. Meng, Xiangyi Hu, Ming Reese, Jamie Srivastava, Sunil K. |
author_sort | Ehlers, Justis P. |
collection | PubMed |
description | PURPOSE: The purpose of this study was to evaluate the feasibility of assessing quantitative longitudinal fluid dynamics and total retinal fluid indices (TRFIs) with higher-order optical coherence tomography (OCT) for neovascular age-related macular degeneration (nAMD). METHODS: A post hoc image analysis study was performed using the phase II OSPREY clinical trial comparing brolucizumab and aflibercept in nAMD. Higher-order OCT analysis using a machine learning−enabled fluid feature extraction platform was used to segment intraretinal fluid (IRF) and subretinal fluid (SRF) volumetric components. TRFI, the proportion of fluid volume against total retinal volume, was calculated. Longitudinal fluid metrics were evaluated for the following groups: all subjects (i.e. treatment agnostic), brolucizumab, and aflibercept. RESULTS: Mean IRF and SRF volumes were significantly reduced from baseline at each timepoint for all groups. Fluid feature extraction allowed high-resolution assessment of quantitative fluid burden. A greater proportion of brolucizumab participants achieved true zero and minimal fluid (total fluid volume between 0.0001 and 0.001mm(3)) versus aflibercept participants at week 40. True zero fluid during q12 brolucizumab dosing was achieved in 36.6% to 38.5%, similar to the 25.6% to 38.5% during the corresponding q8 aflibercept cycles. TRFI was significantly reduced from baseline in all groups. CONCLUSIONS: Higher-order OCT analysis demonstrates the feasibility of fluid feature extraction and longitudinal volumetric fluid burden and TRFI characterization in nAMD, supporting a unique opportunity for fluid burden assessment and the impact on outcomes. TRANSLATIONAL RELEVANCE: Detection and characterization of disease activity is vital for optimal treatment of nAMD. Longitudinal assessment of fluid dynamics and the TRFI provide important proof of concept for future automated tools in characterizing disease activity. |
format | Online Article Text |
id | pubmed-7995350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79953502021-04-01 Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD Ehlers, Justis P. Clark, Julie Uchida, Atsuro Figueiredo, Natalia Babiuch, Amy Talcott, Katherine E. Lunasco, Leina Le, Thuy K. Meng, Xiangyi Hu, Ming Reese, Jamie Srivastava, Sunil K. Transl Vis Sci Technol Article PURPOSE: The purpose of this study was to evaluate the feasibility of assessing quantitative longitudinal fluid dynamics and total retinal fluid indices (TRFIs) with higher-order optical coherence tomography (OCT) for neovascular age-related macular degeneration (nAMD). METHODS: A post hoc image analysis study was performed using the phase II OSPREY clinical trial comparing brolucizumab and aflibercept in nAMD. Higher-order OCT analysis using a machine learning−enabled fluid feature extraction platform was used to segment intraretinal fluid (IRF) and subretinal fluid (SRF) volumetric components. TRFI, the proportion of fluid volume against total retinal volume, was calculated. Longitudinal fluid metrics were evaluated for the following groups: all subjects (i.e. treatment agnostic), brolucizumab, and aflibercept. RESULTS: Mean IRF and SRF volumes were significantly reduced from baseline at each timepoint for all groups. Fluid feature extraction allowed high-resolution assessment of quantitative fluid burden. A greater proportion of brolucizumab participants achieved true zero and minimal fluid (total fluid volume between 0.0001 and 0.001mm(3)) versus aflibercept participants at week 40. True zero fluid during q12 brolucizumab dosing was achieved in 36.6% to 38.5%, similar to the 25.6% to 38.5% during the corresponding q8 aflibercept cycles. TRFI was significantly reduced from baseline in all groups. CONCLUSIONS: Higher-order OCT analysis demonstrates the feasibility of fluid feature extraction and longitudinal volumetric fluid burden and TRFI characterization in nAMD, supporting a unique opportunity for fluid burden assessment and the impact on outcomes. TRANSLATIONAL RELEVANCE: Detection and characterization of disease activity is vital for optimal treatment of nAMD. Longitudinal assessment of fluid dynamics and the TRFI provide important proof of concept for future automated tools in characterizing disease activity. The Association for Research in Vision and Ophthalmology 2021-03-25 /pmc/articles/PMC7995350/ /pubmed/34003963 http://dx.doi.org/10.1167/tvst.10.3.29 Text en Copyright 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Ehlers, Justis P. Clark, Julie Uchida, Atsuro Figueiredo, Natalia Babiuch, Amy Talcott, Katherine E. Lunasco, Leina Le, Thuy K. Meng, Xiangyi Hu, Ming Reese, Jamie Srivastava, Sunil K. Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title | Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title_full | Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title_fullStr | Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title_full_unstemmed | Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title_short | Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular AMD |
title_sort | longitudinal higher-order oct assessment of quantitative fluid dynamics and the total retinal fluid index in neovascular amd |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995350/ https://www.ncbi.nlm.nih.gov/pubmed/34003963 http://dx.doi.org/10.1167/tvst.10.3.29 |
work_keys_str_mv | AT ehlersjustisp longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT clarkjulie longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT uchidaatsuro longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT figueiredonatalia longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT babiuchamy longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT talcottkatherinee longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT lunascoleina longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT lethuyk longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT mengxiangyi longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT huming longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT reesejamie longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd AT srivastavasunilk longitudinalhigherorderoctassessmentofquantitativefluiddynamicsandthetotalretinalfluidindexinneovascularamd |