Cargando…
Identifying modules of cooperating cancer drivers
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in in...
Autores principales: | Klein, Michael I, Cannataro, Vincent L, Townsend, Jeffrey P, Newman, Scott, Stern, David F, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995435/ https://www.ncbi.nlm.nih.gov/pubmed/33769711 http://dx.doi.org/10.15252/msb.20209810 |
Ejemplares similares
-
Wagging the long tail of drivers of prostate cancer
por: Cannataro, Vincent L., et al.
Publicado: (2019) -
Integrated analysis of recurrent properties of cancer genes to identify novel drivers
por: D'Antonio, Matteo, et al.
Publicado: (2013) -
DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
por: Bashashati, Ali, et al.
Publicado: (2012) -
DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies
por: Han, Yi, et al.
Publicado: (2019) -
CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
por: Tian, Liqing, et al.
Publicado: (2020)