Cargando…

Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise

Detalles Bibliográficos
Autores principales: Driggs, Derek, Selby, Ian, Roberts, Michael, Gkrania-Klotsas, Effrossyni, Rudd, James H. F., Yang, Guang, Babar, Judith, Sala, Evis, Schönlieb, Carola-Bibiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Radiological Society of North America 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995449/
https://www.ncbi.nlm.nih.gov/pubmed/34240059
http://dx.doi.org/10.1148/ryai.2021210011
_version_ 1783669921938407424
author Driggs, Derek
Selby, Ian
Roberts, Michael
Gkrania-Klotsas, Effrossyni
Rudd, James H. F.
Yang, Guang
Babar, Judith
Sala, Evis
Schönlieb, Carola-Bibiane
author_facet Driggs, Derek
Selby, Ian
Roberts, Michael
Gkrania-Klotsas, Effrossyni
Rudd, James H. F.
Yang, Guang
Babar, Judith
Sala, Evis
Schönlieb, Carola-Bibiane
author_sort Driggs, Derek
collection PubMed
description
format Online
Article
Text
id pubmed-7995449
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Radiological Society of North America
record_format MEDLINE/PubMed
spelling pubmed-79954492021-03-26 Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise Driggs, Derek Selby, Ian Roberts, Michael Gkrania-Klotsas, Effrossyni Rudd, James H. F. Yang, Guang Babar, Judith Sala, Evis Schönlieb, Carola-Bibiane Radiol Artif Intell Editorial Radiological Society of North America 2021-03-24 /pmc/articles/PMC7995449/ /pubmed/34240059 http://dx.doi.org/10.1148/ryai.2021210011 Text en 2021 by the Radiological Society of North America, Inc. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
spellingShingle Editorial
Driggs, Derek
Selby, Ian
Roberts, Michael
Gkrania-Klotsas, Effrossyni
Rudd, James H. F.
Yang, Guang
Babar, Judith
Sala, Evis
Schönlieb, Carola-Bibiane
Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title_full Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title_fullStr Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title_full_unstemmed Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title_short Machine Learning for COVID-19 Diagnosis and Prognostication: Lessons for Amplifying the Signal While Reducing the Noise
title_sort machine learning for covid-19 diagnosis and prognostication: lessons for amplifying the signal while reducing the noise
topic Editorial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995449/
https://www.ncbi.nlm.nih.gov/pubmed/34240059
http://dx.doi.org/10.1148/ryai.2021210011
work_keys_str_mv AT driggsderek machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT selbyian machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT robertsmichael machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT gkraniaklotsaseffrossyni machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT ruddjameshf machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT yangguang machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT babarjudith machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT salaevis machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT schonliebcarolabibiane machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise
AT machinelearningforcovid19diagnosisandprognosticationlessonsforamplifyingthesignalwhilereducingthenoise