Cargando…

OncoGEMINI: software for investigating tumor variants from multiple biopsies with integrated cancer annotations

BACKGROUND: DNA sequencing has unveiled extensive tumor heterogeneity in several different cancer types, with many exhibiting diverse subclonal populations. Identifying and tracing mutations throughout the expansion and progression of a tumor represents a significant challenge. Furthermore, prioriti...

Descripción completa

Detalles Bibliográficos
Autores principales: Nicholas, Thomas J., Cormier, Michael J., Huang, Xiaomeng, Qiao, Yi, Marth, Gabor T., Quinlan, Aaron R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995589/
https://www.ncbi.nlm.nih.gov/pubmed/33771218
http://dx.doi.org/10.1186/s13073-021-00854-6
Descripción
Sumario:BACKGROUND: DNA sequencing has unveiled extensive tumor heterogeneity in several different cancer types, with many exhibiting diverse subclonal populations. Identifying and tracing mutations throughout the expansion and progression of a tumor represents a significant challenge. Furthermore, prioritizing the subset of such mutations most likely to contribute to tumor evolution or that could serve as potential therapeutic targets represents an ongoing problem. RESULTS: Here, we describe OncoGEMINI, a new tool designed for exploring the complex patterns and trajectory of somatic and inherited variation observed in heterogeneous tumors biopsied over the course of treatment. This is accomplished by creating a searchable database of variants that includes tumor sampling time points and allows for filtering methods that reflect specific changes in variant allele frequencies over time. Additionally, by incorporating existing annotations and resources that facilitate the interpretation of cancer mutations (e.g., CIViC, DGIdb), OncoGEMINI enables rapid searches for, and potential identification of, mutations that may be driving subclonal evolution. CONCLUSIONS: By combining relevant genomic annotations alongside specific filtering tools, OncoGEMINI provides powerful and customizable approaches that enable the quick identification of individual tumor variants that meet specified criteria. It can be applied to a wide range of tumor-derived sequence data, but is especially designed for studies with multiple samples, including longitudinal datasets. It is available under an MIT license at github.com/fakedrtom/oncogemini. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-00854-6.