Cargando…
Combined embedding model for MiRNA-disease association prediction
BACKGROUND: Cumulative evidence from biological experiments has confirmed that miRNAs have significant roles to diagnose and treat complex diseases. However, traditional medical experiments have limitations in time-consuming and high cost so that they fail to find the unconfirmed miRNA and disease i...
Autores principales: | Liu, Bailong, Zhu, Xiaoyan, Zhang, Lei, Liang, Zhizheng, Li, Zhengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995599/ https://www.ncbi.nlm.nih.gov/pubmed/33765909 http://dx.doi.org/10.1186/s12859-021-04092-w |
Ejemplares similares
-
Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model
por: Zhang, Lei, et al.
Publicado: (2020) -
Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA–disease association prediction
por: Huang, Dan, et al.
Publicado: (2022) -
DBMDA: A Unified Embedding for Sequence-Based miRNA Similarity Measure with Applications to Predict and Validate miRNA-Disease Associations
por: Zheng, Kai, et al.
Publicado: (2019) -
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Pang, Shanchen, et al.
Publicado: (2021)