Cargando…

Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers

The potent antimicrobial effects of antimicrobial photodynamic therapy (aPDT) with visible light plus water-filtered infrared-A irradiation and natural compounds as photosensitizers (PSs) have recently been demonstrated. The aim of this study was to obtain information on the antimicrobial effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrubasik-Hausmann, Sigrun, Hellwig, Elmar, Müller, Michael, Al-Ahmad, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995975/
https://www.ncbi.nlm.nih.gov/pubmed/33668205
http://dx.doi.org/10.3390/nu13030710
Descripción
Sumario:The potent antimicrobial effects of antimicrobial photodynamic therapy (aPDT) with visible light plus water-filtered infrared-A irradiation and natural compounds as photosensitizers (PSs) have recently been demonstrated. The aim of this study was to obtain information on the antimicrobial effects of aPDT with mother juices against typical cariogenic oral Streptococcus pathogens in their planktonic form and determine its eradication potential on total human salivary bacteria from volunteers. Mother juices of pomegranate, bilberry, and chokeberry at different concentrations were used as PSs. The unweighted (absolute) irradiance was 200 mW cm(−2), applied five minutes. Planktonic cultures of Streptococcus mutans and Streptococcus sobrinus and total mixed bacteria from pooled saliva of volunteers were treated with aPDT. Up to more than 5 log(10) of S. mutans and S. sobrinus were killed by aPDT with 0.4% and 0.8% pomegranate juice, 3% and 50% chokeberry juice, and 12.5% bilberry juice (both strains). Concentrations of at least 25% (pomegranate) and >50% (chokeberry and bilberry) eradicated the mixed bacteria in saliva samples. This pilot study has shown that pomegranate mother juice is superior to the berry juices as a multicomponent PS for killing pathogenic oral bacteria with aPDT.