Cargando…

Guanosine-5′-triphosphate cyclohydrolase 1 regulated long noncoding RNAs are potential targets for microglial activation in neuropathic pain

Several studies have confirmed that microglia are involved in neuropathic pain. Inhibition of guanosine-5′-triphosphate cyclohydrolase 1 (GTPCH1) can reduce the inflammation of microglia. However, the precise mechanism by which GTPCH1 regulates neuropathic pain remains unclear. In this study, BV2 mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yan-Hu, Chen, Guo-Wu, Li, Xue-Song, Jia, Shu, Meng, Chun-Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996028/
https://www.ncbi.nlm.nih.gov/pubmed/32985494
http://dx.doi.org/10.4103/1673-5374.290914
Descripción
Sumario:Several studies have confirmed that microglia are involved in neuropathic pain. Inhibition of guanosine-5′-triphosphate cyclohydrolase 1 (GTPCH1) can reduce the inflammation of microglia. However, the precise mechanism by which GTPCH1 regulates neuropathic pain remains unclear. In this study, BV2 microglia were transfected with adenovirus to knockdown GTPCH1 expression. High throughput sequencing analysis revealed that the mitogen-activated protein kinase (MAPK) related pathways and proteins were the most significantly down-regulated molecular function. Co-expression network analysis of Mapk14 mRNA and five long noncoding RNAs (lncRNAs) revealed their correlation. Quantitative reverse transcription-polymerase chain reaction revealed that among five lncRNAs, ENSMUST00000205634, ENSMUST00000218450 and ENSMUST00000156079 were related to the downregulation of Mapk14 mRNA expression. These provide some new potential targets for the involvement of GTPCH1 in neuropathic pain. This study is the first to note the differential expression of lncRNAs and mRNA in GTPCH1 knockdown BV2 microglia. Findings from this study reveal the mechanism by which GTPCH1 activates microglia and provide new potential targets for microglial activation in neuropathic pain.