Cargando…

The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease

AIM: Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predi...

Descripción completa

Detalles Bibliográficos
Autores principales: Higuera-de-la-Tijera, Fátima, Servín-Caamaño, Alfredo, Reyes-Herrera, Daniel, Flores-López, Argelia, Robiou-Vivero, Enrique J. A., Martínez-Rivera, Felipe, Galindo-Hernández, Victor, Rosales-Salyano, Victor H., Casillas-Suárez, Catalina, Chapa-Azuela, Oscar, Chávez-Morales, Alfonso, Jiménez-Bobadilla, Billy, Hernández-Medel, María L., Orozco-Zúñiga, Benjamín, Zacarías-Ezzat, Jed R., Camacho, Santiago, Pérez-Hernández, José L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996042/
https://www.ncbi.nlm.nih.gov/pubmed/33791045
http://dx.doi.org/10.1155/2021/6658270
_version_ 1783670033036083200
author Higuera-de-la-Tijera, Fátima
Servín-Caamaño, Alfredo
Reyes-Herrera, Daniel
Flores-López, Argelia
Robiou-Vivero, Enrique J. A.
Martínez-Rivera, Felipe
Galindo-Hernández, Victor
Rosales-Salyano, Victor H.
Casillas-Suárez, Catalina
Chapa-Azuela, Oscar
Chávez-Morales, Alfonso
Jiménez-Bobadilla, Billy
Hernández-Medel, María L.
Orozco-Zúñiga, Benjamín
Zacarías-Ezzat, Jed R.
Camacho, Santiago
Pérez-Hernández, José L.
author_facet Higuera-de-la-Tijera, Fátima
Servín-Caamaño, Alfredo
Reyes-Herrera, Daniel
Flores-López, Argelia
Robiou-Vivero, Enrique J. A.
Martínez-Rivera, Felipe
Galindo-Hernández, Victor
Rosales-Salyano, Victor H.
Casillas-Suárez, Catalina
Chapa-Azuela, Oscar
Chávez-Morales, Alfonso
Jiménez-Bobadilla, Billy
Hernández-Medel, María L.
Orozco-Zúñiga, Benjamín
Zacarías-Ezzat, Jed R.
Camacho, Santiago
Pérez-Hernández, José L.
author_sort Higuera-de-la-Tijera, Fátima
collection PubMed
description AIM: Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predictive factors related to severe disease development with intensive care requirements in patients with COVID-19. METHODS: Data from COVID-19 patients were collected at admission time to our hospital. Differential biochemical factors were identified between seriously ill patients requiring intensive care unit (ICU) admission (ICU patients) versus stable patients without the need for ICU admission (non-ICU patients). Multiple linear regression was applied, then a predictive model of severity called Age-AST-D dimer (AAD) was constructed (n = 166) and validated (n = 170). RESULTS: Derivation cohort: from 166 patients included, there were 27 (16.3%) ICU patients that showed higher levels of liver injury markers (P < 0.01) compared with non-ICU patients: alanine aminotrasnferase (ALT) 225.4 ± 341.2 vs. 41.3 ± 41.1, aspartate aminotransferase (AST) 325.3 ± 382.4 vs. 52.8 ± 47.1, lactic dehydrogenase (LDH) 764.6 ± 401.9 vs. 461.0 ± 185.6, D-dimer (DD) 7765 ± 9109 vs. 1871 ± 4146, and age 58.6 ± 12.7 vs. 49.1 ± 12.8. With these finding, a model called Age-AST-DD (AAD), with a cut-point of <2.75 (sensitivity = 0.797 and specificity = 0.391, c − statistic = 0.74; 95%IC: 0.62-0.86, P < 0.001), to predict the risk of need admission to ICU (OR = 5.8; 95% CI: 2.2-15.4, P = 0.001), was constructed. Validation cohort: in 170 different patients, the AAD model < 2.75 (c − statistic = 0.80 (95% CI: 0.70-0.91, P < 0.001) adequately predicted the risk (OR = 8.8, 95% CI: 3.4-22.6, P < 0.001) to be admitted in the ICU (27 patients, 15.95%). CONCLUSIONS: The elevation of AST (a possible marker of early liver injury) along with DD and age efficiently predict early (at admission time) probability of ICU admission during the clinical course of COVID-19. The AAD model can improve the comprehensive management of COVID-19 patients, and it could be useful as a triage tool to early classify patients with a high risk of developing a severe clinical course of the disease.
format Online
Article
Text
id pubmed-7996042
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-79960422021-03-30 The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease Higuera-de-la-Tijera, Fátima Servín-Caamaño, Alfredo Reyes-Herrera, Daniel Flores-López, Argelia Robiou-Vivero, Enrique J. A. Martínez-Rivera, Felipe Galindo-Hernández, Victor Rosales-Salyano, Victor H. Casillas-Suárez, Catalina Chapa-Azuela, Oscar Chávez-Morales, Alfonso Jiménez-Bobadilla, Billy Hernández-Medel, María L. Orozco-Zúñiga, Benjamín Zacarías-Ezzat, Jed R. Camacho, Santiago Pérez-Hernández, José L. Dis Markers Research Article AIM: Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predictive factors related to severe disease development with intensive care requirements in patients with COVID-19. METHODS: Data from COVID-19 patients were collected at admission time to our hospital. Differential biochemical factors were identified between seriously ill patients requiring intensive care unit (ICU) admission (ICU patients) versus stable patients without the need for ICU admission (non-ICU patients). Multiple linear regression was applied, then a predictive model of severity called Age-AST-D dimer (AAD) was constructed (n = 166) and validated (n = 170). RESULTS: Derivation cohort: from 166 patients included, there were 27 (16.3%) ICU patients that showed higher levels of liver injury markers (P < 0.01) compared with non-ICU patients: alanine aminotrasnferase (ALT) 225.4 ± 341.2 vs. 41.3 ± 41.1, aspartate aminotransferase (AST) 325.3 ± 382.4 vs. 52.8 ± 47.1, lactic dehydrogenase (LDH) 764.6 ± 401.9 vs. 461.0 ± 185.6, D-dimer (DD) 7765 ± 9109 vs. 1871 ± 4146, and age 58.6 ± 12.7 vs. 49.1 ± 12.8. With these finding, a model called Age-AST-DD (AAD), with a cut-point of <2.75 (sensitivity = 0.797 and specificity = 0.391, c − statistic = 0.74; 95%IC: 0.62-0.86, P < 0.001), to predict the risk of need admission to ICU (OR = 5.8; 95% CI: 2.2-15.4, P = 0.001), was constructed. Validation cohort: in 170 different patients, the AAD model < 2.75 (c − statistic = 0.80 (95% CI: 0.70-0.91, P < 0.001) adequately predicted the risk (OR = 8.8, 95% CI: 3.4-22.6, P < 0.001) to be admitted in the ICU (27 patients, 15.95%). CONCLUSIONS: The elevation of AST (a possible marker of early liver injury) along with DD and age efficiently predict early (at admission time) probability of ICU admission during the clinical course of COVID-19. The AAD model can improve the comprehensive management of COVID-19 patients, and it could be useful as a triage tool to early classify patients with a high risk of developing a severe clinical course of the disease. Hindawi 2021-03-23 /pmc/articles/PMC7996042/ /pubmed/33791045 http://dx.doi.org/10.1155/2021/6658270 Text en Copyright © 2021 Fátima Higuera-de-la-Tijera et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Higuera-de-la-Tijera, Fátima
Servín-Caamaño, Alfredo
Reyes-Herrera, Daniel
Flores-López, Argelia
Robiou-Vivero, Enrique J. A.
Martínez-Rivera, Felipe
Galindo-Hernández, Victor
Rosales-Salyano, Victor H.
Casillas-Suárez, Catalina
Chapa-Azuela, Oscar
Chávez-Morales, Alfonso
Jiménez-Bobadilla, Billy
Hernández-Medel, María L.
Orozco-Zúñiga, Benjamín
Zacarías-Ezzat, Jed R.
Camacho, Santiago
Pérez-Hernández, José L.
The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title_full The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title_fullStr The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title_full_unstemmed The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title_short The Age-AST-D Dimer (AAD) Regression Model Predicts Severe COVID-19 Disease
title_sort age-ast-d dimer (aad) regression model predicts severe covid-19 disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996042/
https://www.ncbi.nlm.nih.gov/pubmed/33791045
http://dx.doi.org/10.1155/2021/6658270
work_keys_str_mv AT higueradelatijerafatima theageastddimeraadregressionmodelpredictsseverecovid19disease
AT servincaamanoalfredo theageastddimeraadregressionmodelpredictsseverecovid19disease
AT reyesherreradaniel theageastddimeraadregressionmodelpredictsseverecovid19disease
AT floreslopezargelia theageastddimeraadregressionmodelpredictsseverecovid19disease
AT robiouviveroenriqueja theageastddimeraadregressionmodelpredictsseverecovid19disease
AT martinezriverafelipe theageastddimeraadregressionmodelpredictsseverecovid19disease
AT galindohernandezvictor theageastddimeraadregressionmodelpredictsseverecovid19disease
AT rosalessalyanovictorh theageastddimeraadregressionmodelpredictsseverecovid19disease
AT casillassuarezcatalina theageastddimeraadregressionmodelpredictsseverecovid19disease
AT chapaazuelaoscar theageastddimeraadregressionmodelpredictsseverecovid19disease
AT chavezmoralesalfonso theageastddimeraadregressionmodelpredictsseverecovid19disease
AT jimenezbobadillabilly theageastddimeraadregressionmodelpredictsseverecovid19disease
AT hernandezmedelmarial theageastddimeraadregressionmodelpredictsseverecovid19disease
AT orozcozunigabenjamin theageastddimeraadregressionmodelpredictsseverecovid19disease
AT zacariasezzatjedr theageastddimeraadregressionmodelpredictsseverecovid19disease
AT camachosantiago theageastddimeraadregressionmodelpredictsseverecovid19disease
AT perezhernandezjosel theageastddimeraadregressionmodelpredictsseverecovid19disease
AT higueradelatijerafatima ageastddimeraadregressionmodelpredictsseverecovid19disease
AT servincaamanoalfredo ageastddimeraadregressionmodelpredictsseverecovid19disease
AT reyesherreradaniel ageastddimeraadregressionmodelpredictsseverecovid19disease
AT floreslopezargelia ageastddimeraadregressionmodelpredictsseverecovid19disease
AT robiouviveroenriqueja ageastddimeraadregressionmodelpredictsseverecovid19disease
AT martinezriverafelipe ageastddimeraadregressionmodelpredictsseverecovid19disease
AT galindohernandezvictor ageastddimeraadregressionmodelpredictsseverecovid19disease
AT rosalessalyanovictorh ageastddimeraadregressionmodelpredictsseverecovid19disease
AT casillassuarezcatalina ageastddimeraadregressionmodelpredictsseverecovid19disease
AT chapaazuelaoscar ageastddimeraadregressionmodelpredictsseverecovid19disease
AT chavezmoralesalfonso ageastddimeraadregressionmodelpredictsseverecovid19disease
AT jimenezbobadillabilly ageastddimeraadregressionmodelpredictsseverecovid19disease
AT hernandezmedelmarial ageastddimeraadregressionmodelpredictsseverecovid19disease
AT orozcozunigabenjamin ageastddimeraadregressionmodelpredictsseverecovid19disease
AT zacariasezzatjedr ageastddimeraadregressionmodelpredictsseverecovid19disease
AT camachosantiago ageastddimeraadregressionmodelpredictsseverecovid19disease
AT perezhernandezjosel ageastddimeraadregressionmodelpredictsseverecovid19disease