Cargando…

New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches

SIMPLE SUMMARY: Carbon nanotubes are revolutionary materials with applications in a lot of different areas. However, there is a rising concern regarding unlikely toxicity effects these materials may trigger. Due to this, the main aim of this paper is to develop a comprehensive approach to study toxi...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Durruthy, Michael, Concu, Riccardo, Ruso, Juan M., Cordeiro, M. Natália D. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996163/
https://www.ncbi.nlm.nih.gov/pubmed/33668702
http://dx.doi.org/10.3390/biology10030171
_version_ 1783670054738460672
author González-Durruthy, Michael
Concu, Riccardo
Ruso, Juan M.
Cordeiro, M. Natália D. S.
author_facet González-Durruthy, Michael
Concu, Riccardo
Ruso, Juan M.
Cordeiro, M. Natália D. S.
author_sort González-Durruthy, Michael
collection PubMed
description SIMPLE SUMMARY: Carbon nanotubes are revolutionary materials with applications in a lot of different areas. However, there is a rising concern regarding unlikely toxicity effects these materials may trigger. Due to this, the main aim of this paper is to develop a comprehensive approach to study toxicity effect of carbon nanotubes on the mitochondria F0F1-ATPase. We have employed a combination of experimental and computational study. In so doing, we have combined in vitro inhibition responses in submitochondrial particles with docking elastic network models, fractal surface analysis, and Nano-quantitative structure toxicity relationship models (Nano-QSTR models). Results show that this method may be used for the fast prediction of the nanotoxicity induced by single walled carbon nanotubes (SWCNT), avoiding time- and money-consuming techniques, and may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms. ABSTRACT: Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = −5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine.
format Online
Article
Text
id pubmed-7996163
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79961632021-03-27 New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches González-Durruthy, Michael Concu, Riccardo Ruso, Juan M. Cordeiro, M. Natália D. S. Biology (Basel) Article SIMPLE SUMMARY: Carbon nanotubes are revolutionary materials with applications in a lot of different areas. However, there is a rising concern regarding unlikely toxicity effects these materials may trigger. Due to this, the main aim of this paper is to develop a comprehensive approach to study toxicity effect of carbon nanotubes on the mitochondria F0F1-ATPase. We have employed a combination of experimental and computational study. In so doing, we have combined in vitro inhibition responses in submitochondrial particles with docking elastic network models, fractal surface analysis, and Nano-quantitative structure toxicity relationship models (Nano-QSTR models). Results show that this method may be used for the fast prediction of the nanotoxicity induced by single walled carbon nanotubes (SWCNT), avoiding time- and money-consuming techniques, and may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms. ABSTRACT: Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = −5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine. MDPI 2021-02-25 /pmc/articles/PMC7996163/ /pubmed/33668702 http://dx.doi.org/10.3390/biology10030171 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
González-Durruthy, Michael
Concu, Riccardo
Ruso, Juan M.
Cordeiro, M. Natália D. S.
New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title_full New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title_fullStr New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title_full_unstemmed New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title_short New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches
title_sort new mechanistic insights on carbon nanotubes’ nanotoxicity using isolated submitochondrial particles, molecular docking, and nano-qstr approaches
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996163/
https://www.ncbi.nlm.nih.gov/pubmed/33668702
http://dx.doi.org/10.3390/biology10030171
work_keys_str_mv AT gonzalezdurruthymichael newmechanisticinsightsoncarbonnanotubesnanotoxicityusingisolatedsubmitochondrialparticlesmoleculardockingandnanoqstrapproaches
AT concuriccardo newmechanisticinsightsoncarbonnanotubesnanotoxicityusingisolatedsubmitochondrialparticlesmoleculardockingandnanoqstrapproaches
AT rusojuanm newmechanisticinsightsoncarbonnanotubesnanotoxicityusingisolatedsubmitochondrialparticlesmoleculardockingandnanoqstrapproaches
AT cordeiromnataliads newmechanisticinsightsoncarbonnanotubesnanotoxicityusingisolatedsubmitochondrialparticlesmoleculardockingandnanoqstrapproaches