Cargando…

(-)-Leucophyllone, a Tirucallane Triterpenoid from Cornus walteri, Enhances Insulin Secretion in INS-1 Cells

Phytochemical examination of the MeOH extract from the stems and stem bark of Cornus walteri (Cornaceae) led to the isolation and verification of a tirucallane triterpenoid, (-)-leucophyllone, as a major component. Its structure was elucidated using NMR spectroscopy and liquid chromatography–mass sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dahae, Kim, Ki Hyun, Jang, Taesu, Kang, Ki Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996230/
https://www.ncbi.nlm.nih.gov/pubmed/33668330
http://dx.doi.org/10.3390/plants10030431
Descripción
Sumario:Phytochemical examination of the MeOH extract from the stems and stem bark of Cornus walteri (Cornaceae) led to the isolation and verification of a tirucallane triterpenoid, (-)-leucophyllone, as a major component. Its structure was elucidated using NMR spectroscopy and liquid chromatography–mass spectrometry. The effect of (-)-leucophyllone on insulin secretion in INS-1 cells was investigated. (-)-Leucophyllone increased glucose-stimulated insulin secretion (GSIS) at concentrations showing no cytotoxic effect in rat INS-1 pancreatic β-cells. Moreover, we attempted to determine the mechanism of action of (-)-leucophyllone in the activation of insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1). Treatment of INS-1 cells with (-)-leucophyllone markedly increased the expression of these proteins. Our findings indicate the potential of (-)-leucophyllone as an antidiabetic agent.