Cargando…

Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique

The conventional engineering stress-strain curve could not accurately describe the true stress-strain and local deformability of the necking part of tensile specimens, as it calculates the strain by using the whole gauge length, assuming the tensile specimen was deformed uniformly. In this study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yonghao, Gu, Yanglin, Guo, Yazhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996532/
https://www.ncbi.nlm.nih.gov/pubmed/33668939
http://dx.doi.org/10.3390/nano11030574
_version_ 1783670124062965760
author Zhao, Yonghao
Gu, Yanglin
Guo, Yazhou
author_facet Zhao, Yonghao
Gu, Yanglin
Guo, Yazhou
author_sort Zhao, Yonghao
collection PubMed
description The conventional engineering stress-strain curve could not accurately describe the true stress-strain and local deformability of the necking part of tensile specimens, as it calculates the strain by using the whole gauge length, assuming the tensile specimen was deformed uniformly. In this study, we employed 3D optical measuring digital image correlation (DIC) to systematically measure the full strain field and local strain during the whole tensile process, and calculate the real-time strain and actual flow stress in the necking region of ultrafine-grained (UFG) Ti. The post-necking elongation and strain hardening exponent of the UFG Ti necking part were then measured as 36% and 0.101, slightly smaller than those of the coarse grained Ti (52% and 0.167), suggesting the high plastic deformability in the necking part of the UFG Ti. Finite elemental modeling (FEM) indicates that when necking occurs, strain is concentrated in the necking region. The stress state of the necking part was transformed from uniaxial in the uniform elongation stage to a triaxial stress state. A scanning electron microscopic (SEM) study revealed the shear and ductile fracture, as well as numerous micro shear bands in the UFG Ti, which are controlled by cooperative grain boundary sliding. Our work revealed the large plastic deformability of UFG metals in the necking region under a complex stress state.
format Online
Article
Text
id pubmed-7996532
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79965322021-03-27 Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique Zhao, Yonghao Gu, Yanglin Guo, Yazhou Nanomaterials (Basel) Article The conventional engineering stress-strain curve could not accurately describe the true stress-strain and local deformability of the necking part of tensile specimens, as it calculates the strain by using the whole gauge length, assuming the tensile specimen was deformed uniformly. In this study, we employed 3D optical measuring digital image correlation (DIC) to systematically measure the full strain field and local strain during the whole tensile process, and calculate the real-time strain and actual flow stress in the necking region of ultrafine-grained (UFG) Ti. The post-necking elongation and strain hardening exponent of the UFG Ti necking part were then measured as 36% and 0.101, slightly smaller than those of the coarse grained Ti (52% and 0.167), suggesting the high plastic deformability in the necking part of the UFG Ti. Finite elemental modeling (FEM) indicates that when necking occurs, strain is concentrated in the necking region. The stress state of the necking part was transformed from uniaxial in the uniform elongation stage to a triaxial stress state. A scanning electron microscopic (SEM) study revealed the shear and ductile fracture, as well as numerous micro shear bands in the UFG Ti, which are controlled by cooperative grain boundary sliding. Our work revealed the large plastic deformability of UFG metals in the necking region under a complex stress state. MDPI 2021-02-25 /pmc/articles/PMC7996532/ /pubmed/33668939 http://dx.doi.org/10.3390/nano11030574 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Zhao, Yonghao
Gu, Yanglin
Guo, Yazhou
Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title_full Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title_fullStr Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title_full_unstemmed Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title_short Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
title_sort plasticity and deformation mechanisms of ultrafine-grained ti in necking region revealed by digital image correlation technique
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996532/
https://www.ncbi.nlm.nih.gov/pubmed/33668939
http://dx.doi.org/10.3390/nano11030574
work_keys_str_mv AT zhaoyonghao plasticityanddeformationmechanismsofultrafinegrainedtiinneckingregionrevealedbydigitalimagecorrelationtechnique
AT guyanglin plasticityanddeformationmechanismsofultrafinegrainedtiinneckingregionrevealedbydigitalimagecorrelationtechnique
AT guoyazhou plasticityanddeformationmechanismsofultrafinegrainedtiinneckingregionrevealedbydigitalimagecorrelationtechnique