Cargando…
Novel Immune Stimulant Amplifies Direct Tumoricidal Effect of Cancer Ablation Therapies and Their Systemic Antitumor Immune Efficacy
Ablation therapies have emerged as an effective tool for destroying cancerous tissue, but for advanced and disseminated tumors their application remains mainly a palliative measure. However, it is becoming increasingly clear that this limitation can be redressed by the use of intratumoral immune sti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996593/ https://www.ncbi.nlm.nih.gov/pubmed/33668932 http://dx.doi.org/10.3390/cells10030492 |
Sumario: | Ablation therapies have emerged as an effective tool for destroying cancerous tissue, but for advanced and disseminated tumors their application remains mainly a palliative measure. However, it is becoming increasingly clear that this limitation can be redressed by the use of intratumoral immune stimulating agents for amplifying potential antitumor immune responses that are induced by ablation therapies. A novel immune stimulating drug IP-001, a specific variant of the N-dihydrogalactochitosan (GC) family of molecules, has shown to be effective against metastatic tumors, when combined with different forms tumor ablation. It acts as a multi-function immune stimulant both by directly inhibiting cell membrane repair and recycling of ablation-damaged tumor cells, and indirectly by sequestering ablation-released tumor antigens, as well as recruiting and stimulating antigen presenting cells to induce a potent Th1 type T cell response against the cancer. In this review, we briefly discuss the current applications of local ablation for cancer treatment and the effects of GC in combination with other ablation therapies, a therapeutic approach that is pioneering the field of Interventional Immuno-Oncology (IIO). |
---|