Cargando…
Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds
Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse far...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996777/ https://www.ncbi.nlm.nih.gov/pubmed/33652892 http://dx.doi.org/10.3390/microorganisms9030501 |
_version_ | 1783670177478475776 |
---|---|
author | Zhang, Zhimin Deng, Qinghui Wan, Lingling Cao, Xiuyun Zhou, Yiyong Song, Chunlei |
author_facet | Zhang, Zhimin Deng, Qinghui Wan, Lingling Cao, Xiuyun Zhou, Yiyong Song, Chunlei |
author_sort | Zhang, Zhimin |
collection | PubMed |
description | Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of β-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson’s correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices. |
format | Online Article Text |
id | pubmed-7996777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79967772021-03-27 Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds Zhang, Zhimin Deng, Qinghui Wan, Lingling Cao, Xiuyun Zhou, Yiyong Song, Chunlei Microorganisms Article Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of β-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson’s correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices. MDPI 2021-02-26 /pmc/articles/PMC7996777/ /pubmed/33652892 http://dx.doi.org/10.3390/microorganisms9030501 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Zhang, Zhimin Deng, Qinghui Wan, Lingling Cao, Xiuyun Zhou, Yiyong Song, Chunlei Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title | Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title_full | Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title_fullStr | Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title_full_unstemmed | Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title_short | Bacterial Communities and Enzymatic Activities in Sediments of Long-Term Fish and Crab Aquaculture Ponds |
title_sort | bacterial communities and enzymatic activities in sediments of long-term fish and crab aquaculture ponds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996777/ https://www.ncbi.nlm.nih.gov/pubmed/33652892 http://dx.doi.org/10.3390/microorganisms9030501 |
work_keys_str_mv | AT zhangzhimin bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds AT dengqinghui bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds AT wanlingling bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds AT caoxiuyun bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds AT zhouyiyong bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds AT songchunlei bacterialcommunitiesandenzymaticactivitiesinsedimentsoflongtermfishandcrabaquacultureponds |