Cargando…
On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation
SIMPLE SUMMARY: One of the main challenges in the application of Machine Learning in medicine is data collection. Either due to ethical concerns or lack of patients, data may be scarce. In this paper Deep Convolutional Generative Adversarial Networks (DCGAN) have been applied for the purpose of data...
Autores principales: | Lorencin, Ivan, Baressi Šegota, Sandi, Anđelić, Nikola, Mrzljak, Vedran, Ćabov, Tomislav, Španjol, Josip, Car, Zlatan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996800/ https://www.ncbi.nlm.nih.gov/pubmed/33652727 http://dx.doi.org/10.3390/biology10030175 |
Ejemplares similares
-
Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
por: Baressi Šegota, Sandi, et al.
Publicado: (2021) -
Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron
por: Car, Zlatan, et al.
Publicado: (2020) -
Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks
por: Lorencin, Ivan, et al.
Publicado: (2021) -
The Development of Symbolic Expressions for Fire Detection with Symbolic Classifier Using Sensor Fusion Data
por: Anđelić, Nikola, et al.
Publicado: (2022) -
Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm
por: Anđelić, Nikola, et al.
Publicado: (2021)