Cargando…

Clinicopathological and Genomic Characterization of a Simmental Calf with Generalized Bovine Juvenile Angiomatosis

SIMPLE SUMMARY: Vascular anomalies represent a heterogeneous group of rare disorders encompassing both vascular malformations and tumors, which can be congenital or arise shortly after birth. They often pose a diagnostic challenge in human and veterinary medicine, and the referring nomenclature is e...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacinto, Joana G. P., Häfliger, Irene M., Borel, Nicole, Zanolari, Patrik, Drögemüller, Cord, Veiga, Inês M. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996833/
https://www.ncbi.nlm.nih.gov/pubmed/33652974
http://dx.doi.org/10.3390/ani11030624
Descripción
Sumario:SIMPLE SUMMARY: Vascular anomalies represent a heterogeneous group of rare disorders encompassing both vascular malformations and tumors, which can be congenital or arise shortly after birth. They often pose a diagnostic challenge in human and veterinary medicine, and the referring nomenclature is equivocal. Bovine juvenile angiomatosis (BJA), a clinical condition belonging to this group of disorders, encompasses vascular malformations and tumors arising in calves. Usually, such vascular anomalies are not further investigated on a molecular genetic level, mainly because of a lack of resources and diagnostic tools, as well as the low value and short lifespan of the affected animals. Here we report the clinical, pathological, immunohistochemical, and genetic features of a Simmental calf that displayed multiple cutaneous, subcutaneous, and visceral vascular hamartomas compatible with a generalized form of BJA. Whole-genome sequencing identified six coding variants, including four heterozygous variants in the PREX1, UBE3B, PCDHGA2, and ZSWIM6 genes, which occurred only in the BJA-affected calf and were absent in the global control cohort of more than 4500 cattle. Assuming a germline mutation as etiology, one of these variants might be responsible for the vascular malformations identified in this calf. ABSTRACT: Bovine juvenile angiomatosis (BJA) comprises a group of single or multiple proliferative vascular anomalies in the skin and viscera of affected calves. The purpose of this study was to characterize the clinicopathological phenotype of a 1.5-month-old Simmental calf with multiple cutaneous, subcutaneous, and visceral vascular hamartomas, which were compatible with a generalized form of BJA, and to identify genetic cause for this phenotype by whole-genome sequencing (WGS). The calf was referred to the clinics as a result of its failure to thrive and the presence of multiple cutaneous and subcutaneous nodules, some of which bled abundantly following spontaneous rupture. Gross pathology revealed similar lesions at the inner thoracic wall, diaphragm, mediastinum, pericardium, inner abdominal wall, and mesentery. Histologically, variably sized cavities lined by a single layer of plump cells and supported by a loose stroma with occasional acute hemorrhage were observed. Determined by immunochemistry, the plump cells lining the cavities displayed a strong cytoplasmic signal for PECAM-1, von Willebrand factor, and vimentin. WGS revealed six private protein-changing variants affecting different genes present in the calf and absent in more than 4500 control genomes. Assuming a spontaneous de novo mutation event, one of the identified variants found in the PREX1, UBE3B, PCDHGA2, and ZSWIM6 genes may represent a possible candidate pathogenic variant for this rare form of vascular malformation.