Cargando…
A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit
SIMPLE SUMMARY: Clinical potential and safety are presented as novel criteria to evaluate neutron beams designed for boron neutron capture therapy (BNCT). The presently used figures of merit are a set of physical quantities calculated in air, related to the neutron flux, the collimation, and the spe...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996903/ https://www.ncbi.nlm.nih.gov/pubmed/33652642 http://dx.doi.org/10.3390/biology10030174 |
_version_ | 1783670206819729408 |
---|---|
author | Postuma, Ian González, Sara Herrera, Maria S Provenzano, Lucas Ferrarini, Michele Magni, Chiara Protti, Nicoletta Fatemi, Setareh Vercesi, Valerio Battistoni, Giuseppe Anselmi Tamburini, Umberto Hao Liu, Yuan Kankaanranta, Leena Koivunoro, Hanna Altieri, Saverio Bortolussi, Silva |
author_facet | Postuma, Ian González, Sara Herrera, Maria S Provenzano, Lucas Ferrarini, Michele Magni, Chiara Protti, Nicoletta Fatemi, Setareh Vercesi, Valerio Battistoni, Giuseppe Anselmi Tamburini, Umberto Hao Liu, Yuan Kankaanranta, Leena Koivunoro, Hanna Altieri, Saverio Bortolussi, Silva |
author_sort | Postuma, Ian |
collection | PubMed |
description | SIMPLE SUMMARY: Clinical potential and safety are presented as novel criteria to evaluate neutron beams designed for boron neutron capture therapy (BNCT). The presently used figures of merit are a set of physical quantities calculated in air, related to the neutron flux, the collimation, and the spectral characteristics. However, the capability of the beam to deliver an effective and safe treatment to patients should be the most important criterion in view of the clinical application. This work presents the design of a neutron beam produced by a proton accelerator coupled to a beryllium target and the use of new figures of merit to choose the best beam among different candidates. These figures of merit use tridimensional dosimetry simulated in phantoms and patients, to calculate the probability of tumor control without affecting healthy tissues, employing proper radiobiological models. Moreover, the dose absorbed by out-of-field healthy organs is used as a criterion to establish the safest beam for clinical treatments. Results show that beams that would be rejected by physical in-air quantities demonstrate a clinical performance comparable to existing neutron beams successfully used for patients, and that the presented criteria allow a clear selection of the most adequate beam among the ones presented. ABSTRACT: (1) Background:The quality of neutron beams for Boron Neutron Capture Therapy (BNCT) is currently defined by its physical characteristics in air. Recommendations exist to define whether a designed beam is useful for clinical treatment. This work presents a new way to evaluate neutron beams based on their clinical performance and on their safety, employing radiobiological quantities. (2) Methods: The case study is a neutron beam for deep-seated tumors from a 5 MeV proton beam coupled to a beryllium target. Physical Figures of Merit were used to design five beams; however, they did not allow a clear ranking of their quality in terms of therapeutic potential. The latter was then evaluated based on in-phantom dose distributions and on the calculation of the Uncomplicated Tumor Control Probability (UTCP). The safety of the beams was also evaluated calculating the in-patient out-of-beam dosimetry. (3) Results: All the beams ensured a UTCP comparable to the one of a clinical beam in phantom; the safety criterion allowed to choose the best candidate. When this was tested in the treatment planning of a real patient treated in Finland, the UTCP was still comparable to the one of the clinical beam. (4) Conclusions: Even when standard physical recommendations are not met, radiobiological and dosimetric criteria demonstrate to be a valid tool to select an effective and safe beam for patient treatment. |
format | Online Article Text |
id | pubmed-7996903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79969032021-03-27 A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit Postuma, Ian González, Sara Herrera, Maria S Provenzano, Lucas Ferrarini, Michele Magni, Chiara Protti, Nicoletta Fatemi, Setareh Vercesi, Valerio Battistoni, Giuseppe Anselmi Tamburini, Umberto Hao Liu, Yuan Kankaanranta, Leena Koivunoro, Hanna Altieri, Saverio Bortolussi, Silva Biology (Basel) Article SIMPLE SUMMARY: Clinical potential and safety are presented as novel criteria to evaluate neutron beams designed for boron neutron capture therapy (BNCT). The presently used figures of merit are a set of physical quantities calculated in air, related to the neutron flux, the collimation, and the spectral characteristics. However, the capability of the beam to deliver an effective and safe treatment to patients should be the most important criterion in view of the clinical application. This work presents the design of a neutron beam produced by a proton accelerator coupled to a beryllium target and the use of new figures of merit to choose the best beam among different candidates. These figures of merit use tridimensional dosimetry simulated in phantoms and patients, to calculate the probability of tumor control without affecting healthy tissues, employing proper radiobiological models. Moreover, the dose absorbed by out-of-field healthy organs is used as a criterion to establish the safest beam for clinical treatments. Results show that beams that would be rejected by physical in-air quantities demonstrate a clinical performance comparable to existing neutron beams successfully used for patients, and that the presented criteria allow a clear selection of the most adequate beam among the ones presented. ABSTRACT: (1) Background:The quality of neutron beams for Boron Neutron Capture Therapy (BNCT) is currently defined by its physical characteristics in air. Recommendations exist to define whether a designed beam is useful for clinical treatment. This work presents a new way to evaluate neutron beams based on their clinical performance and on their safety, employing radiobiological quantities. (2) Methods: The case study is a neutron beam for deep-seated tumors from a 5 MeV proton beam coupled to a beryllium target. Physical Figures of Merit were used to design five beams; however, they did not allow a clear ranking of their quality in terms of therapeutic potential. The latter was then evaluated based on in-phantom dose distributions and on the calculation of the Uncomplicated Tumor Control Probability (UTCP). The safety of the beams was also evaluated calculating the in-patient out-of-beam dosimetry. (3) Results: All the beams ensured a UTCP comparable to the one of a clinical beam in phantom; the safety criterion allowed to choose the best candidate. When this was tested in the treatment planning of a real patient treated in Finland, the UTCP was still comparable to the one of the clinical beam. (4) Conclusions: Even when standard physical recommendations are not met, radiobiological and dosimetric criteria demonstrate to be a valid tool to select an effective and safe beam for patient treatment. MDPI 2021-02-26 /pmc/articles/PMC7996903/ /pubmed/33652642 http://dx.doi.org/10.3390/biology10030174 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Postuma, Ian González, Sara Herrera, Maria S Provenzano, Lucas Ferrarini, Michele Magni, Chiara Protti, Nicoletta Fatemi, Setareh Vercesi, Valerio Battistoni, Giuseppe Anselmi Tamburini, Umberto Hao Liu, Yuan Kankaanranta, Leena Koivunoro, Hanna Altieri, Saverio Bortolussi, Silva A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title | A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title_full | A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title_fullStr | A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title_full_unstemmed | A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title_short | A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit |
title_sort | novel approach to design and evaluate bnct neutron beams combining physical, radiobiological, and dosimetric figures of merit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996903/ https://www.ncbi.nlm.nih.gov/pubmed/33652642 http://dx.doi.org/10.3390/biology10030174 |
work_keys_str_mv | AT postumaian anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT gonzalezsara anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT herreramarias anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT provenzanolucas anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT ferrarinimichele anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT magnichiara anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT prottinicoletta anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT fatemisetareh anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT vercesivalerio anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT battistonigiuseppe anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT anselmitamburiniumberto anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT haoliuyuan anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT kankaanrantaleena anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT koivunorohanna anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT altierisaverio anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT bortolussisilva anovelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT postumaian novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT gonzalezsara novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT herreramarias novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT provenzanolucas novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT ferrarinimichele novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT magnichiara novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT prottinicoletta novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT fatemisetareh novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT vercesivalerio novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT battistonigiuseppe novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT anselmitamburiniumberto novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT haoliuyuan novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT kankaanrantaleena novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT koivunorohanna novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT altierisaverio novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit AT bortolussisilva novelapproachtodesignandevaluatebnctneutronbeamscombiningphysicalradiobiologicalanddosimetricfiguresofmerit |