Cargando…
Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.)
Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and bio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996931/ https://www.ncbi.nlm.nih.gov/pubmed/33652954 http://dx.doi.org/10.3390/antiox10030351 |
_version_ | 1783670213322997760 |
---|---|
author | Mohi-Ud-Din, Mohammed Siddiqui, Nurealam Rohman, Motiar Jagadish, S. V. Krishna Ahmed, Jalal Uddin Hassan, Mohamed M. Hossain, Akbar Islam, Tofazzal |
author_facet | Mohi-Ud-Din, Mohammed Siddiqui, Nurealam Rohman, Motiar Jagadish, S. V. Krishna Ahmed, Jalal Uddin Hassan, Mohamed M. Hossain, Akbar Islam, Tofazzal |
author_sort | Mohi-Ud-Din, Mohammed |
collection | PubMed |
description | Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H(2)O(2) contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 (“BG26”) maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 (“Pavon”), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety “Pavon”. Hierarchical clustering and principal component analysis revealed that variety “BG26” possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress. |
format | Online Article Text |
id | pubmed-7996931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79969312021-03-27 Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) Mohi-Ud-Din, Mohammed Siddiqui, Nurealam Rohman, Motiar Jagadish, S. V. Krishna Ahmed, Jalal Uddin Hassan, Mohamed M. Hossain, Akbar Islam, Tofazzal Antioxidants (Basel) Article Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H(2)O(2) contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 (“BG26”) maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 (“Pavon”), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety “Pavon”. Hierarchical clustering and principal component analysis revealed that variety “BG26” possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress. MDPI 2021-02-26 /pmc/articles/PMC7996931/ /pubmed/33652954 http://dx.doi.org/10.3390/antiox10030351 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Mohi-Ud-Din, Mohammed Siddiqui, Nurealam Rohman, Motiar Jagadish, S. V. Krishna Ahmed, Jalal Uddin Hassan, Mohamed M. Hossain, Akbar Islam, Tofazzal Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title | Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title_full | Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title_fullStr | Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title_full_unstemmed | Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title_short | Physiological and Biochemical Dissection Reveals a Trade-Off between Antioxidant Capacity and Heat Tolerance in Bread Wheat (Triticum aestivum L.) |
title_sort | physiological and biochemical dissection reveals a trade-off between antioxidant capacity and heat tolerance in bread wheat (triticum aestivum l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996931/ https://www.ncbi.nlm.nih.gov/pubmed/33652954 http://dx.doi.org/10.3390/antiox10030351 |
work_keys_str_mv | AT mohiuddinmohammed physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT siddiquinurealam physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT rohmanmotiar physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT jagadishsvkrishna physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT ahmedjalaluddin physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT hassanmohamedm physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT hossainakbar physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml AT islamtofazzal physiologicalandbiochemicaldissectionrevealsatradeoffbetweenantioxidantcapacityandheattoleranceinbreadwheattriticumaestivuml |