Cargando…

Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach

This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the t...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Win Min, Mahikul, Wiriya, Pouplin, Thomas, Lawpoolsri, Saranath, White, Lisa J., Pan-Ngum, Wirichada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997007/
https://www.ncbi.nlm.nih.gov/pubmed/33770104
http://dx.doi.org/10.1371/journal.pone.0248846
Descripción
Sumario:This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221–275) per 100,000 population in 2020 to 239 (95% CrI, 215–267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%–2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1–2.9) in 2020 and 2.5% (95% CrI, 2.3–3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9–41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9–40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.