Cargando…
Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study
[Image: see text] Consensus strategies have been widely applied in many different scientific fields, based on the assumption that the fusion of several sources of information increases the outcome reliability. Despite the widespread application of consensus approaches, their advantages in quantitati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997107/ https://www.ncbi.nlm.nih.gov/pubmed/32073844 http://dx.doi.org/10.1021/acs.jcim.9b01057 |
_version_ | 1783670252123455488 |
---|---|
author | Valsecchi, Cecile Grisoni, Francesca Consonni, Viviana Ballabio, Davide |
author_facet | Valsecchi, Cecile Grisoni, Francesca Consonni, Viviana Ballabio, Davide |
author_sort | Valsecchi, Cecile |
collection | PubMed |
description | [Image: see text] Consensus strategies have been widely applied in many different scientific fields, based on the assumption that the fusion of several sources of information increases the outcome reliability. Despite the widespread application of consensus approaches, their advantages in quantitative structure–activity relationship (QSAR) modeling have not been thoroughly evaluated, mainly due to the lack of appropriate large-scale data sets. In this study, we evaluated the advantages and drawbacks of consensus approaches compared to single classification QSAR models. To this end, we used a data set of three properties (androgen receptor binding, agonism, and antagonism) for approximately 4000 molecules with predictions performed by more than 20 QSAR models, made available in a large-scale collaborative project. The individual QSAR models were compared with two consensus approaches, majority voting and the Bayes consensus with discrete probability distributions, in both protective and nonprotective forms. Consensus strategies proved to be more accurate and to better cover the analyzed chemical space than individual QSARs on average, thus motivating their widespread application for property prediction. Scripts and data to reproduce the results of this study are available for download. |
format | Online Article Text |
id | pubmed-7997107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79971072021-03-29 Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study Valsecchi, Cecile Grisoni, Francesca Consonni, Viviana Ballabio, Davide J Chem Inf Model [Image: see text] Consensus strategies have been widely applied in many different scientific fields, based on the assumption that the fusion of several sources of information increases the outcome reliability. Despite the widespread application of consensus approaches, their advantages in quantitative structure–activity relationship (QSAR) modeling have not been thoroughly evaluated, mainly due to the lack of appropriate large-scale data sets. In this study, we evaluated the advantages and drawbacks of consensus approaches compared to single classification QSAR models. To this end, we used a data set of three properties (androgen receptor binding, agonism, and antagonism) for approximately 4000 molecules with predictions performed by more than 20 QSAR models, made available in a large-scale collaborative project. The individual QSAR models were compared with two consensus approaches, majority voting and the Bayes consensus with discrete probability distributions, in both protective and nonprotective forms. Consensus strategies proved to be more accurate and to better cover the analyzed chemical space than individual QSARs on average, thus motivating their widespread application for property prediction. Scripts and data to reproduce the results of this study are available for download. American Chemical Society 2020-02-19 2020-03-23 /pmc/articles/PMC7997107/ /pubmed/32073844 http://dx.doi.org/10.1021/acs.jcim.9b01057 Text en Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Valsecchi, Cecile Grisoni, Francesca Consonni, Viviana Ballabio, Davide Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study |
title | Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study |
title_full | Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study |
title_fullStr | Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study |
title_full_unstemmed | Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study |
title_short | Consensus versus Individual QSARs in Classification:
Comparison on a Large-Scale Case Study |
title_sort | consensus versus individual qsars in classification:
comparison on a large-scale case study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997107/ https://www.ncbi.nlm.nih.gov/pubmed/32073844 http://dx.doi.org/10.1021/acs.jcim.9b01057 |
work_keys_str_mv | AT valsecchicecile consensusversusindividualqsarsinclassificationcomparisononalargescalecasestudy AT grisonifrancesca consensusversusindividualqsarsinclassificationcomparisononalargescalecasestudy AT consonniviviana consensusversusindividualqsarsinclassificationcomparisononalargescalecasestudy AT ballabiodavide consensusversusindividualqsarsinclassificationcomparisononalargescalecasestudy |