Cargando…

Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients

The article describes the rationale for the administration of zinc-chelating agents in COVID-19 patients. In a previous work I have highlighted that the binding of the SARS-CoV spike proteins to the zinc-metalloprotease ACE2 has been shown to induce ACE2 shedding by activating the zinc-metalloprotea...

Descripción completa

Detalles Bibliográficos
Autor principal: Zamai, Loris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997276/
https://www.ncbi.nlm.nih.gov/pubmed/33673459
http://dx.doi.org/10.3390/cells10030506
_version_ 1783670292076298240
author Zamai, Loris
author_facet Zamai, Loris
author_sort Zamai, Loris
collection PubMed
description The article describes the rationale for the administration of zinc-chelating agents in COVID-19 patients. In a previous work I have highlighted that the binding of the SARS-CoV spike proteins to the zinc-metalloprotease ACE2 has been shown to induce ACE2 shedding by activating the zinc-metalloprotease ADAM17, which ultimately leads to systemic upregulation of ACE2 activity. Moreover, based on experimental models, it was also shown the detrimental effect of the excessive systemic activity of ACE2 through its downstream pathways, which leads to “clinical” manifestations resembling COVID-19. In this regard, strong upregulation of circulating ACE2 activity was recently reported in COVID-19 patients, thus supporting the previous hypothesis that COVID-19 may derive from upregulation of ACE2 activity. Based on this, a reasonable hypothesis of using inhibitors that curb the upregulation of both ACE2 and ADAM17 zinc-metalloprotease activities and consequent positive feedback-loops (initially triggered by SARS-CoV-2 and subsequently sustained independently on viral trigger) is proposed as therapy for COVID-19. In particular, zinc-chelating agents such as citrate and ethylenediaminetetraacetic acid (EDTA) alone or in combination are expected to act in protecting from COVID-19 at different levels thanks to their both anticoagulant properties and inhibitory activity on zinc-metalloproteases. Several arguments are presented in support of this hypothesis and based on the current knowledge of both beneficial/harmful effects and cost/effectiveness, the use of chelating agents in the prevention and therapy of COVID-19 is proposed. In this regard, clinical trials (currently absent) employing citrate/EDTA in COVID-19 are urgently needed in order to shed more light on the efficacy of zinc chelators against SARS-CoV-2 infection in vivo.
format Online
Article
Text
id pubmed-7997276
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79972762021-03-27 Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients Zamai, Loris Cells Opinion The article describes the rationale for the administration of zinc-chelating agents in COVID-19 patients. In a previous work I have highlighted that the binding of the SARS-CoV spike proteins to the zinc-metalloprotease ACE2 has been shown to induce ACE2 shedding by activating the zinc-metalloprotease ADAM17, which ultimately leads to systemic upregulation of ACE2 activity. Moreover, based on experimental models, it was also shown the detrimental effect of the excessive systemic activity of ACE2 through its downstream pathways, which leads to “clinical” manifestations resembling COVID-19. In this regard, strong upregulation of circulating ACE2 activity was recently reported in COVID-19 patients, thus supporting the previous hypothesis that COVID-19 may derive from upregulation of ACE2 activity. Based on this, a reasonable hypothesis of using inhibitors that curb the upregulation of both ACE2 and ADAM17 zinc-metalloprotease activities and consequent positive feedback-loops (initially triggered by SARS-CoV-2 and subsequently sustained independently on viral trigger) is proposed as therapy for COVID-19. In particular, zinc-chelating agents such as citrate and ethylenediaminetetraacetic acid (EDTA) alone or in combination are expected to act in protecting from COVID-19 at different levels thanks to their both anticoagulant properties and inhibitory activity on zinc-metalloproteases. Several arguments are presented in support of this hypothesis and based on the current knowledge of both beneficial/harmful effects and cost/effectiveness, the use of chelating agents in the prevention and therapy of COVID-19 is proposed. In this regard, clinical trials (currently absent) employing citrate/EDTA in COVID-19 are urgently needed in order to shed more light on the efficacy of zinc chelators against SARS-CoV-2 infection in vivo. MDPI 2021-02-27 /pmc/articles/PMC7997276/ /pubmed/33673459 http://dx.doi.org/10.3390/cells10030506 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Opinion
Zamai, Loris
Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title_full Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title_fullStr Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title_full_unstemmed Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title_short Upregulation of the Renin–Angiotensin System Pathways and SARS-CoV-2 Infection: The Rationale for the Administration of Zinc-Chelating Agents in COVID-19 Patients
title_sort upregulation of the renin–angiotensin system pathways and sars-cov-2 infection: the rationale for the administration of zinc-chelating agents in covid-19 patients
topic Opinion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997276/
https://www.ncbi.nlm.nih.gov/pubmed/33673459
http://dx.doi.org/10.3390/cells10030506
work_keys_str_mv AT zamailoris upregulationofthereninangiotensinsystempathwaysandsarscov2infectiontherationalefortheadministrationofzincchelatingagentsincovid19patients