Cargando…
Robustness of Deep Learning Algorithm to Varying Imaging Conditions in Detecting Low Contrast Objects in Computed Tomography Phantom Images: In Comparison to 12 Radiologists
The performance of deep learning algorithm (DLA) to that of radiologists was compared in detecting low contrast objects in CT phantom images under various imaging conditions. For training, 10,000 images were created using American College of Radiology CT phantom as the background. In half of the ima...
Autores principales: | Kim, Hae Young, Lee, Kyeorye, Chang, Won, Kim, Youngjune, Lee, Sungsoo, Oh, Dong Yul, Sunwoo, Leonard, Lee, Yoon Jin, Kim, Young Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997324/ https://www.ncbi.nlm.nih.gov/pubmed/33670866 http://dx.doi.org/10.3390/diagnostics11030410 |
Ejemplares similares
-
The Relationship between Subjective and Objective Parameters in CT Phantom Image Evaluation
por: Park, Hye Jung, et al.
Publicado: (2009) -
Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs
por: Jeon, Yejin, et al.
Publicado: (2021) -
Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning–based image reconstruction algorithm on CT: a phantom study
por: Choi, Hyunsu, et al.
Publicado: (2021) -
Contrast reference values in panoramic radiographic images using an arch-form phantom stand
por: Shin, Jae-Myung, et al.
Publicado: (2016) -
Electromagnetic acoustic imaging methods: resolution, signal-to-noise, and image contrast in phantoms
por: Emerson, Jane F., et al.
Publicado: (2021)