Cargando…
Spectrally encoded single-pixel machine vision using diffractive networks
We demonstrate optical networks composed of diffractive layers trained using deep learning to encode the spatial information of objects into the power spectrum of the diffracted light, which are used to classify objects with a single-pixel spectroscopic detector. Using a plasmonic nanoantenna-based...
Autores principales: | Li, Jingxi, Mengu, Deniz, Yardimci, Nezih T., Luo, Yi, Li, Xurong, Veli, Muhammed, Rivenson, Yair, Jarrahi, Mona, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997518/ https://www.ncbi.nlm.nih.gov/pubmed/33771863 http://dx.doi.org/10.1126/sciadv.abd7690 |
Ejemplares similares
-
Terahertz pulse shaping using diffractive surfaces
por: Veli, Muhammed, et al.
Publicado: (2021) -
Design of task-specific optical systems using broadband diffractive neural networks
por: Luo, Yi, et al.
Publicado: (2019) -
Classification and reconstruction of spatially overlapping phase images using diffractive optical networks
por: Mengu, Deniz, et al.
Publicado: (2022) -
Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor
por: Li, Jingxi, et al.
Publicado: (2023) -
Ensemble learning of diffractive optical networks
por: Rahman, Md Sadman Sakib, et al.
Publicado: (2021)