Cargando…

Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides

Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techni...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yoon Seok, Kang, Sojung, So, Jae-Pil, Kim, Jong Chan, Kim, Kangwon, Yang, Seunghoon, Jung, Yeonjoon, Shin, Yongjun, Lee, Seongwon, Lee, Donghun, Park, Jin-Woo, Cheong, Hyeonsik, Jeong, Hu Young, Park, Hong-Gyu, Lee, Gwan-Hyoung, Lee, Chul-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997527/
https://www.ncbi.nlm.nih.gov/pubmed/33771864
http://dx.doi.org/10.1126/sciadv.abd7921
_version_ 1783670349780484096
author Kim, Yoon Seok
Kang, Sojung
So, Jae-Pil
Kim, Jong Chan
Kim, Kangwon
Yang, Seunghoon
Jung, Yeonjoon
Shin, Yongjun
Lee, Seongwon
Lee, Donghun
Park, Jin-Woo
Cheong, Hyeonsik
Jeong, Hu Young
Park, Hong-Gyu
Lee, Gwan-Hyoung
Lee, Chul-Ho
author_facet Kim, Yoon Seok
Kang, Sojung
So, Jae-Pil
Kim, Jong Chan
Kim, Kangwon
Yang, Seunghoon
Jung, Yeonjoon
Shin, Yongjun
Lee, Seongwon
Lee, Donghun
Park, Jin-Woo
Cheong, Hyeonsik
Jeong, Hu Young
Park, Hong-Gyu
Lee, Gwan-Hyoung
Lee, Chul-Ho
author_sort Kim, Yoon Seok
collection PubMed
description Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic–layer–confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WO(X)/WSe(2) hetero-bilayer formed by monolithic oxidation of the WSe(2) bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics.
format Online
Article
Text
id pubmed-7997527
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-79975272021-04-02 Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides Kim, Yoon Seok Kang, Sojung So, Jae-Pil Kim, Jong Chan Kim, Kangwon Yang, Seunghoon Jung, Yeonjoon Shin, Yongjun Lee, Seongwon Lee, Donghun Park, Jin-Woo Cheong, Hyeonsik Jeong, Hu Young Park, Hong-Gyu Lee, Gwan-Hyoung Lee, Chul-Ho Sci Adv Research Articles Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic–layer–confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WO(X)/WSe(2) hetero-bilayer formed by monolithic oxidation of the WSe(2) bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics. American Association for the Advancement of Science 2021-03-26 /pmc/articles/PMC7997527/ /pubmed/33771864 http://dx.doi.org/10.1126/sciadv.abd7921 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Kim, Yoon Seok
Kang, Sojung
So, Jae-Pil
Kim, Jong Chan
Kim, Kangwon
Yang, Seunghoon
Jung, Yeonjoon
Shin, Yongjun
Lee, Seongwon
Lee, Donghun
Park, Jin-Woo
Cheong, Hyeonsik
Jeong, Hu Young
Park, Hong-Gyu
Lee, Gwan-Hyoung
Lee, Chul-Ho
Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title_full Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title_fullStr Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title_full_unstemmed Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title_short Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
title_sort atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997527/
https://www.ncbi.nlm.nih.gov/pubmed/33771864
http://dx.doi.org/10.1126/sciadv.abd7921
work_keys_str_mv AT kimyoonseok atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT kangsojung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT sojaepil atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT kimjongchan atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT kimkangwon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT yangseunghoon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT jungyeonjoon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT shinyongjun atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT leeseongwon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT leedonghun atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT parkjinwoo atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT cheonghyeonsik atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT jeonghuyoung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT parkhonggyu atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT leegwanhyoung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides
AT leechulho atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides