Cargando…
Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides
Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techni...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997527/ https://www.ncbi.nlm.nih.gov/pubmed/33771864 http://dx.doi.org/10.1126/sciadv.abd7921 |
_version_ | 1783670349780484096 |
---|---|
author | Kim, Yoon Seok Kang, Sojung So, Jae-Pil Kim, Jong Chan Kim, Kangwon Yang, Seunghoon Jung, Yeonjoon Shin, Yongjun Lee, Seongwon Lee, Donghun Park, Jin-Woo Cheong, Hyeonsik Jeong, Hu Young Park, Hong-Gyu Lee, Gwan-Hyoung Lee, Chul-Ho |
author_facet | Kim, Yoon Seok Kang, Sojung So, Jae-Pil Kim, Jong Chan Kim, Kangwon Yang, Seunghoon Jung, Yeonjoon Shin, Yongjun Lee, Seongwon Lee, Donghun Park, Jin-Woo Cheong, Hyeonsik Jeong, Hu Young Park, Hong-Gyu Lee, Gwan-Hyoung Lee, Chul-Ho |
author_sort | Kim, Yoon Seok |
collection | PubMed |
description | Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic–layer–confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WO(X)/WSe(2) hetero-bilayer formed by monolithic oxidation of the WSe(2) bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics. |
format | Online Article Text |
id | pubmed-7997527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79975272021-04-02 Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides Kim, Yoon Seok Kang, Sojung So, Jae-Pil Kim, Jong Chan Kim, Kangwon Yang, Seunghoon Jung, Yeonjoon Shin, Yongjun Lee, Seongwon Lee, Donghun Park, Jin-Woo Cheong, Hyeonsik Jeong, Hu Young Park, Hong-Gyu Lee, Gwan-Hyoung Lee, Chul-Ho Sci Adv Research Articles Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic–layer–confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WO(X)/WSe(2) hetero-bilayer formed by monolithic oxidation of the WSe(2) bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics. American Association for the Advancement of Science 2021-03-26 /pmc/articles/PMC7997527/ /pubmed/33771864 http://dx.doi.org/10.1126/sciadv.abd7921 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kim, Yoon Seok Kang, Sojung So, Jae-Pil Kim, Jong Chan Kim, Kangwon Yang, Seunghoon Jung, Yeonjoon Shin, Yongjun Lee, Seongwon Lee, Donghun Park, Jin-Woo Cheong, Hyeonsik Jeong, Hu Young Park, Hong-Gyu Lee, Gwan-Hyoung Lee, Chul-Ho Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title | Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title_full | Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title_fullStr | Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title_full_unstemmed | Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title_short | Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
title_sort | atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997527/ https://www.ncbi.nlm.nih.gov/pubmed/33771864 http://dx.doi.org/10.1126/sciadv.abd7921 |
work_keys_str_mv | AT kimyoonseok atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT kangsojung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT sojaepil atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT kimjongchan atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT kimkangwon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT yangseunghoon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT jungyeonjoon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT shinyongjun atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT leeseongwon atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT leedonghun atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT parkjinwoo atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT cheonghyeonsik atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT jeonghuyoung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT parkhonggyu atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT leegwanhyoung atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides AT leechulho atomiclayerconfinedmultiplequantumwellsenabledbymonolithicbandgapengineeringoftransitionmetaldichalcogenides |