Cargando…
Synthetic Lethality in Pancreatic Cancer: Discovery of a New RAD51-BRCA2 Small Molecule Disruptor That Inhibits Homologous Recombination and Synergizes with Olaparib
[Image: see text] Synthetic lethality is an innovative framework for discovering novel anticancer drug candidates. One example is the use of PARP inhibitors (PARPi) in oncology patients with BRCA mutations. Here, we exploit a new paradigm based on the possibility of triggering synthetic lethality us...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997579/ https://www.ncbi.nlm.nih.gov/pubmed/32037829 http://dx.doi.org/10.1021/acs.jmedchem.9b01526 |
Sumario: | [Image: see text] Synthetic lethality is an innovative framework for discovering novel anticancer drug candidates. One example is the use of PARP inhibitors (PARPi) in oncology patients with BRCA mutations. Here, we exploit a new paradigm based on the possibility of triggering synthetic lethality using only small organic molecules (dubbed “fully small-molecule-induced synthetic lethality”). We exploited this paradigm to target pancreatic cancer, one of the major unmet needs in oncology. We discovered a dihydroquinolone pyrazoline-based molecule (35d) that disrupts the RAD51-BRCA2 protein–protein interaction, thus mimicking the effect of BRCA2 mutation. 35d inhibits the homologous recombination in a human pancreatic adenocarcinoma cell line. In addition, it synergizes with olaparib (a PARPi) to trigger synthetic lethality. This strategy aims to widen the use of PARPi in BRCA-competent and olaparib-resistant cancers, making fully small-molecule-induced synthetic lethality an innovative approach toward unmet oncological needs. |
---|