Cargando…
Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs
[Image: see text] The aim of this project was to register, in a liquid chromatography–mass spectrometry-based untargeted single-batch analysis, the metabolome of 11 single-cultivar, single-vintage Italian red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello, Primitivo, Raboso, S...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997580/ https://www.ncbi.nlm.nih.gov/pubmed/32271564 http://dx.doi.org/10.1021/acs.jafc.0c00879 |
Sumario: | [Image: see text] The aim of this project was to register, in a liquid chromatography–mass spectrometry-based untargeted single-batch analysis, the metabolome of 11 single-cultivar, single-vintage Italian red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego) from 12 regions across Italy, each one produced in their terroirs under ad hoc legal frameworks to guarantee their quality and origin. The data provided indications regarding the similarity between the cultivars and highlighted a rich list of putative biomarkers of origin wines (pBOWs) characterizing each individual cultivar–terroir combination, where Primitivo, Teroldego, and Nebbiolo had the maximum number of unique pBOWs. The pBOWs included anthocyanins (Teroldego), flavanols (Aglianico, Sangiovese, Nerello, and Nebbiolo), amino acids and N-containing metabolites (Primitivo), hydroxycinnamates (Cannonau), and flavonols (Sangiovese). The raw data generated in this study are publicly available and, therefore, accessible and reusable as a baseline data set for future investigations. |
---|