Cargando…

Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition

The activation of microglial cells and their subsequent neuroinflammatory reactions are related to various degenerative brain diseases. Therefore, the regulation of microglial cell activation is an important point for the research of therapeutic agents for treating or preventing neurodegenerative di...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, You-Chang, Li, Wei, Choi, Jang-Gi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997760/
https://www.ncbi.nlm.nih.gov/pubmed/33790692
http://dx.doi.org/10.1155/2021/6687089
_version_ 1783670399324651520
author Oh, You-Chang
Li, Wei
Choi, Jang-Gi
author_facet Oh, You-Chang
Li, Wei
Choi, Jang-Gi
author_sort Oh, You-Chang
collection PubMed
description The activation of microglial cells and their subsequent neuroinflammatory reactions are related to various degenerative brain diseases. Therefore, the regulation of microglial cell activation is an important point for the research of therapeutic agents for treating or preventing neurodegenerative disorders. Saussureae Radix (SR) is the root of Saussurea lappa Clarke, and it has been used for a long time as an herbal medicine in East Asia to treat indigestion and inflammation of the digestive system. In previous studies, however, the effect of SR ethanolic extract on microglial cell-mediated neuroinflammation was not fully explained. In this study, we explored the antineuroinflammatory activities and molecular mechanisms of SR in microglial cells stimulated with LPS (lipopolysaccharide). Our results illustrated that SR does not cause cytotoxicity and significantly weakens the production of nitric oxide (NO) and inflammatory cytokines. SR treatment also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 2, induced heme oxygenase- (HO-) 1, and activated the nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway. In addition, SR significantly repressed the transcriptional activities of the nuclear factor- (NF-) κB and activator protein- (AP-) 1. Furthermore, SR effectively inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT). Isolation and high-performance liquid chromatography (HPLC) analysis indicated two major sesquiterpenoids (costunolide and dehydrocostuslactone). These compounds significantly inhibited the production of neuroinflammatory mediators and induced HO-1 expression. These findings show that SR could be a potential candidate for the treatment of inflammation-related degenerative brain diseases.
format Online
Article
Text
id pubmed-7997760
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-79977602021-03-30 Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition Oh, You-Chang Li, Wei Choi, Jang-Gi Mediators Inflamm Research Article The activation of microglial cells and their subsequent neuroinflammatory reactions are related to various degenerative brain diseases. Therefore, the regulation of microglial cell activation is an important point for the research of therapeutic agents for treating or preventing neurodegenerative disorders. Saussureae Radix (SR) is the root of Saussurea lappa Clarke, and it has been used for a long time as an herbal medicine in East Asia to treat indigestion and inflammation of the digestive system. In previous studies, however, the effect of SR ethanolic extract on microglial cell-mediated neuroinflammation was not fully explained. In this study, we explored the antineuroinflammatory activities and molecular mechanisms of SR in microglial cells stimulated with LPS (lipopolysaccharide). Our results illustrated that SR does not cause cytotoxicity and significantly weakens the production of nitric oxide (NO) and inflammatory cytokines. SR treatment also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 2, induced heme oxygenase- (HO-) 1, and activated the nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway. In addition, SR significantly repressed the transcriptional activities of the nuclear factor- (NF-) κB and activator protein- (AP-) 1. Furthermore, SR effectively inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT). Isolation and high-performance liquid chromatography (HPLC) analysis indicated two major sesquiterpenoids (costunolide and dehydrocostuslactone). These compounds significantly inhibited the production of neuroinflammatory mediators and induced HO-1 expression. These findings show that SR could be a potential candidate for the treatment of inflammation-related degenerative brain diseases. Hindawi 2021-03-18 /pmc/articles/PMC7997760/ /pubmed/33790692 http://dx.doi.org/10.1155/2021/6687089 Text en Copyright © 2021 You-Chang Oh et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Oh, You-Chang
Li, Wei
Choi, Jang-Gi
Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title_full Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title_fullStr Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title_full_unstemmed Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title_short Saussureae Radix Attenuates Neuroinflammation in LPS-Stimulated Mouse BV2 Microglia via HO-1/Nrf-2 Induction and Inflammatory Pathway Inhibition
title_sort saussureae radix attenuates neuroinflammation in lps-stimulated mouse bv2 microglia via ho-1/nrf-2 induction and inflammatory pathway inhibition
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997760/
https://www.ncbi.nlm.nih.gov/pubmed/33790692
http://dx.doi.org/10.1155/2021/6687089
work_keys_str_mv AT ohyouchang saussureaeradixattenuatesneuroinflammationinlpsstimulatedmousebv2microgliaviaho1nrf2inductionandinflammatorypathwayinhibition
AT liwei saussureaeradixattenuatesneuroinflammationinlpsstimulatedmousebv2microgliaviaho1nrf2inductionandinflammatorypathwayinhibition
AT choijanggi saussureaeradixattenuatesneuroinflammationinlpsstimulatedmousebv2microgliaviaho1nrf2inductionandinflammatorypathwayinhibition