Cargando…

Cyrius: accurate CYP2D6 genotyping using whole-genome sequencing data

Responsible for the metabolism of ~21% of clinically used drugs, CYP2D6 is a critical component of personalized medicine initiatives. Genotyping CYP2D6 is challenging due to sequence similarity with its pseudogene paralog CYP2D7 and a high number and variety of common structural variants (SVs). Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiao, Shen, Fei, Gonzaludo, Nina, Malhotra, Alka, Rogert, Cande, Taft, Ryan J., Bentley, David R., Eberle, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997805/
https://www.ncbi.nlm.nih.gov/pubmed/33462347
http://dx.doi.org/10.1038/s41397-020-00205-5
Descripción
Sumario:Responsible for the metabolism of ~21% of clinically used drugs, CYP2D6 is a critical component of personalized medicine initiatives. Genotyping CYP2D6 is challenging due to sequence similarity with its pseudogene paralog CYP2D7 and a high number and variety of common structural variants (SVs). Here we describe a novel bioinformatics method, Cyrius, that accurately genotypes CYP2D6 using whole-genome sequencing (WGS) data. We show that Cyrius has superior performance (96.5% concordance with truth genotypes) compared to existing methods (84–86.8%). After implementing the improvements identified from the comparison against the truth data, Cyrius’s accuracy has since been improved to 99.3%. Using Cyrius, we built a haplotype frequency database from 2504 ethnically diverse samples and estimate that SV-containing star alleles are more frequent than previously reported. Cyrius will be an important tool to incorporate pharmacogenomics in WGS-based precision medicine initiatives.