Cargando…
Identification of Immunodominant Outer Membrane Proteins of Fusobacterium necrophorum from Severe Ovine Footrot By MALDI-TOF Mass Spectrometry
The aim of this study was to identify the immunodominant outer membrane proteins (OMPs) of Fusobacterium necrophorum from sheep affected with severe foot-rot. The OMP profile of ovine strains of F. necrophorum has not been well studied. We analyzed the OMP profile of the most frequent lktA variant J...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997824/ https://www.ncbi.nlm.nih.gov/pubmed/33638672 http://dx.doi.org/10.1007/s00284-021-02383-2 |
Sumario: | The aim of this study was to identify the immunodominant outer membrane proteins (OMPs) of Fusobacterium necrophorum from sheep affected with severe foot-rot. The OMP profile of ovine strains of F. necrophorum has not been well studied. We analyzed the OMP profile of the most frequent lktA variant JKS-F3 of F. necrophorum associated with severe ovine foot-rot with lesion score 4 in order to identify its major immunodominant OMPs. Electrophoretic separations of extracted OMPs showed a number of spots in two-dimensional electrophoretic gels. Two immunoreactive proteins of size around 43 kDa were identified through western blotting using hyperimmune sera raised in rabbits. These two immunogenic OMPs were analyzed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF/MS) which revealed that these two OMPs of lktA variant JKS-F3 of F. necrophorum showed 46 and 42 percent protein sequence coverage and scores of 125 and 114, respectively, with the reported 43 kDa outer membrane protein of F. necrophorum strain H05, a putative porin having properties similar to pore-forming proteins of anaerobic Gram-negative bacteria. These identified immunogenic OMPs will contribute to our understanding of the pathogenic role played by this organism in ovine foot-rot and could be exploited to devise an effective control strategy through development of an OMP-based recombinant vaccine to mitigate foot-rot in sheep and goats. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00284-021-02383-2. |
---|