Cargando…
Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
Type 2 diabetes mellitus (T2D) prevalence in the United States varies substantially across spatial and temporal scales, attributable to variations of socioeconomic and lifestyle risk factors. Understanding these variations in risk factors contributions to T2D would be of great benefit to interventio...
Autores principales: | Quiñones, Sarah, Goyal, Aditya, Ahmed, Zia U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997882/ https://www.ncbi.nlm.nih.gov/pubmed/33772039 http://dx.doi.org/10.1038/s41598-021-85381-5 |
Ejemplares similares
-
Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
por: Quiñones, Sarah, et al.
Publicado: (2021) -
Untangling the Heterogeneity of Acquired Generalized Lipodystrophy
por: Cavdar, Umit, et al.
Publicado: (2021) -
Untangling the complexity of multimorbidity with machine learning
por: Hassaine, Abdelaali, et al.
Publicado: (2020) -
Analysis of spatial characteristics and geographic weighted regression of tuberculosis prevalence in Kashgar, China
por: Chen, Xiaodie, et al.
Publicado: (2023) -
Geographic and demographic heterogeneity of SARS-CoV-2 diagnostic testing in Illinois, USA, March to December 2020
por: Holden, Tobias M., et al.
Publicado: (2021)