Cargando…

Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury

A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spina...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonizzato, Marco, James, Nicholas D., Pidpruzhnykova, Galyna, Pavlova, Natalia, Shkorbatova, Polina, Baud, Laetitia, Martinez-Gonzalez, Cristina, Squair, Jordan W., DiGiovanna, Jack, Barraud, Quentin, Micera, Silvestro, Courtine, Gregoire
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997909/
https://www.ncbi.nlm.nih.gov/pubmed/33771986
http://dx.doi.org/10.1038/s41467-021-22137-9
_version_ 1783670432016105472
author Bonizzato, Marco
James, Nicholas D.
Pidpruzhnykova, Galyna
Pavlova, Natalia
Shkorbatova, Polina
Baud, Laetitia
Martinez-Gonzalez, Cristina
Squair, Jordan W.
DiGiovanna, Jack
Barraud, Quentin
Micera, Silvestro
Courtine, Gregoire
author_facet Bonizzato, Marco
James, Nicholas D.
Pidpruzhnykova, Galyna
Pavlova, Natalia
Shkorbatova, Polina
Baud, Laetitia
Martinez-Gonzalez, Cristina
Squair, Jordan W.
DiGiovanna, Jack
Barraud, Quentin
Micera, Silvestro
Courtine, Gregoire
author_sort Bonizzato, Marco
collection PubMed
description A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions.
format Online
Article
Text
id pubmed-7997909
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79979092021-04-16 Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury Bonizzato, Marco James, Nicholas D. Pidpruzhnykova, Galyna Pavlova, Natalia Shkorbatova, Polina Baud, Laetitia Martinez-Gonzalez, Cristina Squair, Jordan W. DiGiovanna, Jack Barraud, Quentin Micera, Silvestro Courtine, Gregoire Nat Commun Article A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions. Nature Publishing Group UK 2021-03-26 /pmc/articles/PMC7997909/ /pubmed/33771986 http://dx.doi.org/10.1038/s41467-021-22137-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bonizzato, Marco
James, Nicholas D.
Pidpruzhnykova, Galyna
Pavlova, Natalia
Shkorbatova, Polina
Baud, Laetitia
Martinez-Gonzalez, Cristina
Squair, Jordan W.
DiGiovanna, Jack
Barraud, Quentin
Micera, Silvestro
Courtine, Gregoire
Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title_full Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title_fullStr Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title_full_unstemmed Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title_short Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
title_sort multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997909/
https://www.ncbi.nlm.nih.gov/pubmed/33771986
http://dx.doi.org/10.1038/s41467-021-22137-9
work_keys_str_mv AT bonizzatomarco multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT jamesnicholasd multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT pidpruzhnykovagalyna multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT pavlovanatalia multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT shkorbatovapolina multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT baudlaetitia multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT martinezgonzalezcristina multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT squairjordanw multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT digiovannajack multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT barraudquentin multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT micerasilvestro multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury
AT courtinegregoire multiprongedneuromodulationinterventionengagestheresidualmotorcircuitrytofacilitatewalkinginaratmodelofspinalcordinjury