Cargando…
A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China
In this paper, we analyzed the spatial and temporal causality and graph-based centrality relationship between air pollutants and PM(2.5) concentrations in China from 2013 to 2017. NO(2), SO(2), CO and O(3) were considered the main components of pollution that affected the health of people; thus, var...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997926/ https://www.ncbi.nlm.nih.gov/pubmed/33772063 http://dx.doi.org/10.1038/s41598-021-86304-0 |
_version_ | 1783670435958751232 |
---|---|
author | Wang, Bocheng |
author_facet | Wang, Bocheng |
author_sort | Wang, Bocheng |
collection | PubMed |
description | In this paper, we analyzed the spatial and temporal causality and graph-based centrality relationship between air pollutants and PM(2.5) concentrations in China from 2013 to 2017. NO(2), SO(2), CO and O(3) were considered the main components of pollution that affected the health of people; thus, various joint regression models were built to reveal the causal direction from these individual pollutants to PM(2.5) concentrations. In this causal centrality analysis, Beijing was the most important area in the Jing-Jin-Ji region because of its developed economy and large population. Pollutants in Beijing and peripheral cities were studied. The results showed that NO(2) pollutants play a vital role in the PM(2.5) concentrations in Beijing and its surrounding areas. An obvious causality direction and betweenness centrality were observed in the northern cities compared with others, demonstrating the fact that the more developed cities were most seriously polluted. Superior performance with causal centrality characteristics in the recognition of PM(2.5) concentrations has been achieved. |
format | Online Article Text |
id | pubmed-7997926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79979262021-03-30 A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China Wang, Bocheng Sci Rep Article In this paper, we analyzed the spatial and temporal causality and graph-based centrality relationship between air pollutants and PM(2.5) concentrations in China from 2013 to 2017. NO(2), SO(2), CO and O(3) were considered the main components of pollution that affected the health of people; thus, various joint regression models were built to reveal the causal direction from these individual pollutants to PM(2.5) concentrations. In this causal centrality analysis, Beijing was the most important area in the Jing-Jin-Ji region because of its developed economy and large population. Pollutants in Beijing and peripheral cities were studied. The results showed that NO(2) pollutants play a vital role in the PM(2.5) concentrations in Beijing and its surrounding areas. An obvious causality direction and betweenness centrality were observed in the northern cities compared with others, demonstrating the fact that the more developed cities were most seriously polluted. Superior performance with causal centrality characteristics in the recognition of PM(2.5) concentrations has been achieved. Nature Publishing Group UK 2021-03-26 /pmc/articles/PMC7997926/ /pubmed/33772063 http://dx.doi.org/10.1038/s41598-021-86304-0 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Wang, Bocheng A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title | A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title_full | A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title_fullStr | A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title_full_unstemmed | A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title_short | A novel causality-centrality-based method for the analysis of the impacts of air pollutants on PM(2.5) concentrations in China |
title_sort | novel causality-centrality-based method for the analysis of the impacts of air pollutants on pm(2.5) concentrations in china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997926/ https://www.ncbi.nlm.nih.gov/pubmed/33772063 http://dx.doi.org/10.1038/s41598-021-86304-0 |
work_keys_str_mv | AT wangbocheng anovelcausalitycentralitybasedmethodfortheanalysisoftheimpactsofairpollutantsonpm25concentrationsinchina AT wangbocheng novelcausalitycentralitybasedmethodfortheanalysisoftheimpactsofairpollutantsonpm25concentrationsinchina |