Cargando…

Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy

In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1(P5S) form of the RNA-binding Cold Shock...

Descripción completa

Detalles Bibliográficos
Autores principales: Kottke, Timothy, Tonne, Jason, Evgin, Laura, Driscoll, Christopher B., van Vloten, Jacob, Jennings, Victoria A., Huff, Amanda L., Zell, Brady, Thompson, Jill M., Wongthida, Phonphimon, Pulido, Jose, Schuelke, Matthew R., Samson, Adel, Selby, Peter, Ilett, Elizabeth, McNiven, Mark, Roberts, Lewis R., Borad, Mitesh J., Pandha, Hardev, Harrington, Kevin, Melcher, Alan, Vile, Richard G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997928/
https://www.ncbi.nlm.nih.gov/pubmed/33772027
http://dx.doi.org/10.1038/s41467-021-22115-1
_version_ 1783670436430610432
author Kottke, Timothy
Tonne, Jason
Evgin, Laura
Driscoll, Christopher B.
van Vloten, Jacob
Jennings, Victoria A.
Huff, Amanda L.
Zell, Brady
Thompson, Jill M.
Wongthida, Phonphimon
Pulido, Jose
Schuelke, Matthew R.
Samson, Adel
Selby, Peter
Ilett, Elizabeth
McNiven, Mark
Roberts, Lewis R.
Borad, Mitesh J.
Pandha, Hardev
Harrington, Kevin
Melcher, Alan
Vile, Richard G.
author_facet Kottke, Timothy
Tonne, Jason
Evgin, Laura
Driscoll, Christopher B.
van Vloten, Jacob
Jennings, Victoria A.
Huff, Amanda L.
Zell, Brady
Thompson, Jill M.
Wongthida, Phonphimon
Pulido, Jose
Schuelke, Matthew R.
Samson, Adel
Selby, Peter
Ilett, Elizabeth
McNiven, Mark
Roberts, Lewis R.
Borad, Mitesh J.
Pandha, Hardev
Harrington, Kevin
Melcher, Alan
Vile, Richard G.
author_sort Kottke, Timothy
collection PubMed
description In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1(P5S) form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1(P5S) cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1(P5S) also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1(P5S), preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.
format Online
Article
Text
id pubmed-7997928
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79979282021-04-16 Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy Kottke, Timothy Tonne, Jason Evgin, Laura Driscoll, Christopher B. van Vloten, Jacob Jennings, Victoria A. Huff, Amanda L. Zell, Brady Thompson, Jill M. Wongthida, Phonphimon Pulido, Jose Schuelke, Matthew R. Samson, Adel Selby, Peter Ilett, Elizabeth McNiven, Mark Roberts, Lewis R. Borad, Mitesh J. Pandha, Hardev Harrington, Kevin Melcher, Alan Vile, Richard G. Nat Commun Article In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1(P5S) form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1(P5S) cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1(P5S) also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1(P5S), preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance. Nature Publishing Group UK 2021-03-26 /pmc/articles/PMC7997928/ /pubmed/33772027 http://dx.doi.org/10.1038/s41467-021-22115-1 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kottke, Timothy
Tonne, Jason
Evgin, Laura
Driscoll, Christopher B.
van Vloten, Jacob
Jennings, Victoria A.
Huff, Amanda L.
Zell, Brady
Thompson, Jill M.
Wongthida, Phonphimon
Pulido, Jose
Schuelke, Matthew R.
Samson, Adel
Selby, Peter
Ilett, Elizabeth
McNiven, Mark
Roberts, Lewis R.
Borad, Mitesh J.
Pandha, Hardev
Harrington, Kevin
Melcher, Alan
Vile, Richard G.
Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title_full Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title_fullStr Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title_full_unstemmed Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title_short Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy
title_sort oncolytic virotherapy induced csde1 neo-antigenesis restricts vsv replication but can be targeted by immunotherapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997928/
https://www.ncbi.nlm.nih.gov/pubmed/33772027
http://dx.doi.org/10.1038/s41467-021-22115-1
work_keys_str_mv AT kottketimothy oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT tonnejason oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT evginlaura oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT driscollchristopherb oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT vanvlotenjacob oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT jenningsvictoriaa oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT huffamandal oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT zellbrady oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT thompsonjillm oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT wongthidaphonphimon oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT pulidojose oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT schuelkematthewr oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT samsonadel oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT selbypeter oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT ilettelizabeth oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT mcnivenmark oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT robertslewisr oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT boradmiteshj oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT pandhahardev oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT harringtonkevin oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT melcheralan oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy
AT vilerichardg oncolyticvirotherapyinducedcsde1neoantigenesisrestrictsvsvreplicationbutcanbetargetedbyimmunotherapy