Cargando…
Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics
The perfect absorption of electromagnetic waves has promoted many applications, including photovoltaics, radar cloaking, and molecular detection. Unlike conventional methods of critical coupling that require asymmetric boundaries or coherent perfect absorption that require multiple coherent incident...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997962/ https://www.ncbi.nlm.nih.gov/pubmed/33772003 http://dx.doi.org/10.1038/s41467-021-22171-7 |
Sumario: | The perfect absorption of electromagnetic waves has promoted many applications, including photovoltaics, radar cloaking, and molecular detection. Unlike conventional methods of critical coupling that require asymmetric boundaries or coherent perfect absorption that require multiple coherent incident beams, here we demonstrate single-beam perfect absorption in an on-chip cavity magnonic device without breaking its boundary symmetry. By exploiting magnon-mediated interference between two internal channels, both reflection and transmission of our device can be suppressed to zero, resulting in magnon-induced nearly perfect absorption (MIPA). Such interference can be tuned by the strength and direction of an external magnetic field, thus showing versatile controllability. Furthermore, the same multi-channel interference responsible for MIPA also produces level attraction (LA)-like hybridization between a cavity magnon polariton mode and a cavity photon mode, demonstrating that LA-like hybridization can be surprisingly realized in a coherently coupled system. |
---|