Cargando…
Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome
The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997970/ https://www.ncbi.nlm.nih.gov/pubmed/33771992 http://dx.doi.org/10.1038/s41467-021-22135-x |
_version_ | 1783670444871647232 |
---|---|
author | Durán, Claudio Ciucci, Sara Palladini, Alessandra Ijaz, Umer Z. Zippo, Antonio G. Sterbini, Francesco Paroni Masucci, Luca Cammarota, Giovanni Ianiro, Gianluca Spuul, Pirjo Schroeder, Michael Grill, Stephan W. Parsons, Bryony N. Pritchard, D. Mark Posteraro, Brunella Sanguinetti, Maurizio Gasbarrini, Giovanni Gasbarrini, Antonio Cannistraci, Carlo Vittorio |
author_facet | Durán, Claudio Ciucci, Sara Palladini, Alessandra Ijaz, Umer Z. Zippo, Antonio G. Sterbini, Francesco Paroni Masucci, Luca Cammarota, Giovanni Ianiro, Gianluca Spuul, Pirjo Schroeder, Michael Grill, Stephan W. Parsons, Bryony N. Pritchard, D. Mark Posteraro, Brunella Sanguinetti, Maurizio Gasbarrini, Giovanni Gasbarrini, Antonio Cannistraci, Carlo Vittorio |
author_sort | Durán, Claudio |
collection | PubMed |
description | The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities. |
format | Online Article Text |
id | pubmed-7997970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79979702021-04-16 Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome Durán, Claudio Ciucci, Sara Palladini, Alessandra Ijaz, Umer Z. Zippo, Antonio G. Sterbini, Francesco Paroni Masucci, Luca Cammarota, Giovanni Ianiro, Gianluca Spuul, Pirjo Schroeder, Michael Grill, Stephan W. Parsons, Bryony N. Pritchard, D. Mark Posteraro, Brunella Sanguinetti, Maurizio Gasbarrini, Giovanni Gasbarrini, Antonio Cannistraci, Carlo Vittorio Nat Commun Article The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities. Nature Publishing Group UK 2021-03-26 /pmc/articles/PMC7997970/ /pubmed/33771992 http://dx.doi.org/10.1038/s41467-021-22135-x Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Durán, Claudio Ciucci, Sara Palladini, Alessandra Ijaz, Umer Z. Zippo, Antonio G. Sterbini, Francesco Paroni Masucci, Luca Cammarota, Giovanni Ianiro, Gianluca Spuul, Pirjo Schroeder, Michael Grill, Stephan W. Parsons, Bryony N. Pritchard, D. Mark Posteraro, Brunella Sanguinetti, Maurizio Gasbarrini, Giovanni Gasbarrini, Antonio Cannistraci, Carlo Vittorio Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title | Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title_full | Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title_fullStr | Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title_full_unstemmed | Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title_short | Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
title_sort | nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997970/ https://www.ncbi.nlm.nih.gov/pubmed/33771992 http://dx.doi.org/10.1038/s41467-021-22135-x |
work_keys_str_mv | AT duranclaudio nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT ciuccisara nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT palladinialessandra nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT ijazumerz nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT zippoantoniog nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT sterbinifrancescoparoni nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT masucciluca nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT cammarotagiovanni nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT ianirogianluca nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT spuulpirjo nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT schroedermichael nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT grillstephanw nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT parsonsbryonyn nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT pritcharddmark nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT posterarobrunella nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT sanguinettimaurizio nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT gasbarrinigiovanni nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT gasbarriniantonio nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome AT cannistracicarlovittorio nonlinearmachinelearningpatternrecognitionandbacteriametabolitemultilayernetworkanalysisofperturbedgastricmicrobiome |