Cargando…

Sub-thermionic, ultra-high-gain organic transistors and circuits

The development of organic thin-film transistors (OTFTs) with low power consumption and high gain will advance many flexible electronics. Here, by combining solution-processed monolayer organic crystal, ferroelectric HfZrO(x) gating and van der Waals fabrication, we realize flexible OTFTs that simul...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Zhongzhong, Peng, Boyu, Zeng, Junpeng, Yu, Zhihao, Zhao, Ying, Xie, Jun, Lan, Rongfang, Ma, Zhong, Pan, Lijia, Cao, Ke, Lu, Yang, He, Daowei, Ning, Hongkai, Meng, Wanqing, Yang, Yang, Chen, Xiaoqing, Li, Weisheng, Wang, Jiawei, Pan, Danfeng, Tu, Xuecou, Huo, Wenxing, Huang, Xian, Shi, Dongquan, Li, Ling, Liu, Ming, Shi, Yi, Feng, Xue, Chan, Paddy K. L., Wang, Xinran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997979/
https://www.ncbi.nlm.nih.gov/pubmed/33772009
http://dx.doi.org/10.1038/s41467-021-22192-2
_version_ 1783670446956216320
author Luo, Zhongzhong
Peng, Boyu
Zeng, Junpeng
Yu, Zhihao
Zhao, Ying
Xie, Jun
Lan, Rongfang
Ma, Zhong
Pan, Lijia
Cao, Ke
Lu, Yang
He, Daowei
Ning, Hongkai
Meng, Wanqing
Yang, Yang
Chen, Xiaoqing
Li, Weisheng
Wang, Jiawei
Pan, Danfeng
Tu, Xuecou
Huo, Wenxing
Huang, Xian
Shi, Dongquan
Li, Ling
Liu, Ming
Shi, Yi
Feng, Xue
Chan, Paddy K. L.
Wang, Xinran
author_facet Luo, Zhongzhong
Peng, Boyu
Zeng, Junpeng
Yu, Zhihao
Zhao, Ying
Xie, Jun
Lan, Rongfang
Ma, Zhong
Pan, Lijia
Cao, Ke
Lu, Yang
He, Daowei
Ning, Hongkai
Meng, Wanqing
Yang, Yang
Chen, Xiaoqing
Li, Weisheng
Wang, Jiawei
Pan, Danfeng
Tu, Xuecou
Huo, Wenxing
Huang, Xian
Shi, Dongquan
Li, Ling
Liu, Ming
Shi, Yi
Feng, Xue
Chan, Paddy K. L.
Wang, Xinran
author_sort Luo, Zhongzhong
collection PubMed
description The development of organic thin-film transistors (OTFTs) with low power consumption and high gain will advance many flexible electronics. Here, by combining solution-processed monolayer organic crystal, ferroelectric HfZrO(x) gating and van der Waals fabrication, we realize flexible OTFTs that simultaneously deliver high transconductance and sub-60 mV/dec switching, under one-volt operating voltage. The overall optimization of transconductance, subthreshold swing and output resistance leads to transistor intrinsic gain and amplifier voltage gain over 5.3 × 10(4) and 1.1 × 10(4), respectively, which outperform existing technologies using organics, oxides and low-dimensional nanomaterials. We further demonstrate battery-powered, integrated wearable electrocardiogram (ECG) and pulse sensors that can amplify human physiological signal by 900 times with high fidelity. The sensors are capable of detecting weak ECG waves (undetectable even by clinical equipment) and diagnosing arrhythmia and atrial fibrillation. Our sub-thermionic OTFT is promising for battery/wireless powered yet performance demanding applications such as electronic skins and radio-frequency identification tags, among many others.
format Online
Article
Text
id pubmed-7997979
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79979792021-04-16 Sub-thermionic, ultra-high-gain organic transistors and circuits Luo, Zhongzhong Peng, Boyu Zeng, Junpeng Yu, Zhihao Zhao, Ying Xie, Jun Lan, Rongfang Ma, Zhong Pan, Lijia Cao, Ke Lu, Yang He, Daowei Ning, Hongkai Meng, Wanqing Yang, Yang Chen, Xiaoqing Li, Weisheng Wang, Jiawei Pan, Danfeng Tu, Xuecou Huo, Wenxing Huang, Xian Shi, Dongquan Li, Ling Liu, Ming Shi, Yi Feng, Xue Chan, Paddy K. L. Wang, Xinran Nat Commun Article The development of organic thin-film transistors (OTFTs) with low power consumption and high gain will advance many flexible electronics. Here, by combining solution-processed monolayer organic crystal, ferroelectric HfZrO(x) gating and van der Waals fabrication, we realize flexible OTFTs that simultaneously deliver high transconductance and sub-60 mV/dec switching, under one-volt operating voltage. The overall optimization of transconductance, subthreshold swing and output resistance leads to transistor intrinsic gain and amplifier voltage gain over 5.3 × 10(4) and 1.1 × 10(4), respectively, which outperform existing technologies using organics, oxides and low-dimensional nanomaterials. We further demonstrate battery-powered, integrated wearable electrocardiogram (ECG) and pulse sensors that can amplify human physiological signal by 900 times with high fidelity. The sensors are capable of detecting weak ECG waves (undetectable even by clinical equipment) and diagnosing arrhythmia and atrial fibrillation. Our sub-thermionic OTFT is promising for battery/wireless powered yet performance demanding applications such as electronic skins and radio-frequency identification tags, among many others. Nature Publishing Group UK 2021-03-26 /pmc/articles/PMC7997979/ /pubmed/33772009 http://dx.doi.org/10.1038/s41467-021-22192-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Luo, Zhongzhong
Peng, Boyu
Zeng, Junpeng
Yu, Zhihao
Zhao, Ying
Xie, Jun
Lan, Rongfang
Ma, Zhong
Pan, Lijia
Cao, Ke
Lu, Yang
He, Daowei
Ning, Hongkai
Meng, Wanqing
Yang, Yang
Chen, Xiaoqing
Li, Weisheng
Wang, Jiawei
Pan, Danfeng
Tu, Xuecou
Huo, Wenxing
Huang, Xian
Shi, Dongquan
Li, Ling
Liu, Ming
Shi, Yi
Feng, Xue
Chan, Paddy K. L.
Wang, Xinran
Sub-thermionic, ultra-high-gain organic transistors and circuits
title Sub-thermionic, ultra-high-gain organic transistors and circuits
title_full Sub-thermionic, ultra-high-gain organic transistors and circuits
title_fullStr Sub-thermionic, ultra-high-gain organic transistors and circuits
title_full_unstemmed Sub-thermionic, ultra-high-gain organic transistors and circuits
title_short Sub-thermionic, ultra-high-gain organic transistors and circuits
title_sort sub-thermionic, ultra-high-gain organic transistors and circuits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997979/
https://www.ncbi.nlm.nih.gov/pubmed/33772009
http://dx.doi.org/10.1038/s41467-021-22192-2
work_keys_str_mv AT luozhongzhong subthermionicultrahighgainorganictransistorsandcircuits
AT pengboyu subthermionicultrahighgainorganictransistorsandcircuits
AT zengjunpeng subthermionicultrahighgainorganictransistorsandcircuits
AT yuzhihao subthermionicultrahighgainorganictransistorsandcircuits
AT zhaoying subthermionicultrahighgainorganictransistorsandcircuits
AT xiejun subthermionicultrahighgainorganictransistorsandcircuits
AT lanrongfang subthermionicultrahighgainorganictransistorsandcircuits
AT mazhong subthermionicultrahighgainorganictransistorsandcircuits
AT panlijia subthermionicultrahighgainorganictransistorsandcircuits
AT caoke subthermionicultrahighgainorganictransistorsandcircuits
AT luyang subthermionicultrahighgainorganictransistorsandcircuits
AT hedaowei subthermionicultrahighgainorganictransistorsandcircuits
AT ninghongkai subthermionicultrahighgainorganictransistorsandcircuits
AT mengwanqing subthermionicultrahighgainorganictransistorsandcircuits
AT yangyang subthermionicultrahighgainorganictransistorsandcircuits
AT chenxiaoqing subthermionicultrahighgainorganictransistorsandcircuits
AT liweisheng subthermionicultrahighgainorganictransistorsandcircuits
AT wangjiawei subthermionicultrahighgainorganictransistorsandcircuits
AT pandanfeng subthermionicultrahighgainorganictransistorsandcircuits
AT tuxuecou subthermionicultrahighgainorganictransistorsandcircuits
AT huowenxing subthermionicultrahighgainorganictransistorsandcircuits
AT huangxian subthermionicultrahighgainorganictransistorsandcircuits
AT shidongquan subthermionicultrahighgainorganictransistorsandcircuits
AT liling subthermionicultrahighgainorganictransistorsandcircuits
AT liuming subthermionicultrahighgainorganictransistorsandcircuits
AT shiyi subthermionicultrahighgainorganictransistorsandcircuits
AT fengxue subthermionicultrahighgainorganictransistorsandcircuits
AT chanpaddykl subthermionicultrahighgainorganictransistorsandcircuits
AT wangxinran subthermionicultrahighgainorganictransistorsandcircuits