Cargando…
Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP
Light microscopy has become an indispensable tool for the life sciences, as it enables the rapid acquisition of three-dimensional images from the interior of living cells/tissues. Over the last decades, super-resolution light microscopy techniques have been developed, which allow a resolution up to...
Autores principales: | Soliman, Kareem, Grimm, Florian, Wurm, Christian A., Egner, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997998/ https://www.ncbi.nlm.nih.gov/pubmed/33772099 http://dx.doi.org/10.1038/s41598-021-86460-3 |
Ejemplares similares
-
Multitask machine learning models for predicting lipophilicity (logP) in the SAMPL7 challenge
por: Lenselink, Eelke B., et al.
Publicado: (2021) -
Partition Coefficients (logP) of Hydrolysable Tannins
por: Virtanen, Valtteri, et al.
Publicado: (2020) -
JPlogP: an improved logP predictor trained using predicted data
por: Plante, Jeffrey, et al.
Publicado: (2018) -
Revisiting the Use of Quantum Chemical Calculations in LogP(octanol-water) Prediction
por: Roy, Dipankar, et al.
Publicado: (2023) -
A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogP(O/W), LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability
por: Naef, Rudolf
Publicado: (2015)