Cargando…
Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
Approaches to reliably predict the developmental potential of embryos and select suitable embryos for blastocyst culture are needed. The development of time-lapse monitoring (TLM) and artificial intelligence (AI) may help solve this problem. Here, we report deep learning models that can accurately p...
Autores principales: | Liao, Qiuyue, Zhang, Qi, Feng, Xue, Huang, Haibo, Xu, Haohao, Tian, Baoyuan, Liu, Jihao, Yu, Qihui, Guo, Na, Liu, Qun, Huang, Bo, Ma, Ding, Ai, Jihui, Xu, Shugong, Li, Kezhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998018/ https://www.ncbi.nlm.nih.gov/pubmed/33772211 http://dx.doi.org/10.1038/s42003-021-01937-1 |
Ejemplares similares
-
A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development
por: Milewski, Robert, et al.
Publicado: (2015) -
Short-interval second ejaculation improves sperm quality, blastocyst formation in oligoasthenozoospermic males in ICSI cycles: a time-lapse sibling oocytes study
por: Li, Yaoxuan, et al.
Publicado: (2023) -
3D time-lapse microscopy paired with endpoint lineage analysis in mouse blastocysts
por: Pokrass, Michael J., et al.
Publicado: (2021) -
Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer
por: Tran, D, et al.
Publicado: (2019) -
Morphokinetic parameters as auxiliary criteria for selection of blastocysts cultivated in a time-lapse monitoring system
por: de Macedo, José Fernando, et al.
Publicado: (2020)