Cargando…
Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival
Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their...
Autores principales: | Moncada-Torres, Arturo, van Maaren, Marissa C., Hendriks, Mathijs P., Siesling, Sabine, Geleijnse, Gijs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998037/ https://www.ncbi.nlm.nih.gov/pubmed/33772109 http://dx.doi.org/10.1038/s41598-021-86327-7 |
Ejemplares similares
-
External validation of 87 clinical prediction models supporting clinical decisions for breast cancer patients
por: Hueting, Tom A., et al.
Publicado: (2023) -
Breast-conserving therapy versus mastectomy
por: van Maaren, Marissa C., et al.
Publicado: (2016) -
Routine and interval detection of locoregional breast cancer recurrences and risk of subsequent distant metastasis
por: Eijkelboom, Anouk H., et al.
Publicado: (2022) -
Cox regression can be collapsible and Aalen regression can be non-collapsible
por: Samuelsen, Sven Ove
Publicado: (2022) -
Socioeconomic status and its relation with breast cancer recurrence and survival in young women in the Netherlands
por: van Maaren, Marissa C., et al.
Publicado: (2022)