Cargando…

Muscle Enriched Lamin Interacting Protein (Mlip) Binds Chromatin and Is Required for Myoblast Differentiation

Muscle-enriched A-type lamin-interacting protein (Mlip) is a recently discovered Amniota gene that encodes proteins of unknown biological function. Here we report Mlip’s direct interaction with chromatin, and it may function as a transcriptional co-factor. Chromatin immunoprecipitations with microar...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmady, Elmira, Blais, Alexandre, Burgon, Patrick G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998221/
https://www.ncbi.nlm.nih.gov/pubmed/33802236
http://dx.doi.org/10.3390/cells10030615
Descripción
Sumario:Muscle-enriched A-type lamin-interacting protein (Mlip) is a recently discovered Amniota gene that encodes proteins of unknown biological function. Here we report Mlip’s direct interaction with chromatin, and it may function as a transcriptional co-factor. Chromatin immunoprecipitations with microarray analysis demonstrated a propensity for Mlip to associate with genomic regions in close proximity to genes that control tissue-specific differentiation. Gel mobility shift assays confirmed that Mlip protein complexes with genomic DNA. Blocking Mlip expression in C2C12 myoblasts down-regulates myogenic regulatory factors (MyoD and MyoG) and subsequently significantly inhibits myogenic differentiation and the formation of myotubes. Collectively our data demonstrate that Mlip is required for C2C12 myoblast differentiation into myotubes. Mlip may exert this role as a transcriptional regulator of a myogenic program that is unique to amniotes.