Cargando…
Expanding Our Understanding of COVID-19 from Biomedical Literature Using Word Embedding
A better understanding of the clinical characteristics of coronavirus disease 2019 (COVID-19) is urgently required to address this health crisis. Numerous researchers and pharmaceutical companies are working on developing vaccines and treatments; however, a clear solution has yet to be found. The cu...
Autores principales: | Yang, Heyoung, Sohn, Eunsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998313/ https://www.ncbi.nlm.nih.gov/pubmed/33804131 http://dx.doi.org/10.3390/ijerph18063005 |
Ejemplares similares
-
Thesaurus-based word embeddings for automated biomedical literature classification
por: Koutsomitropoulos, Dimitrios A., et al.
Publicado: (2021) -
Combining word embeddings to extract chemical and drug entities in biomedical literature
por: López-Úbeda, Pilar, et al.
Publicado: (2021) -
Quality of word and concept embeddings in targetted biomedical domains
por: Giancani, Salvatore, et al.
Publicado: (2023) -
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
Biomedical event trigger detection by dependency-based word embedding
por: Wang, Jian, et al.
Publicado: (2016)