Cargando…
RN-Net: A Deep Learning Approach to 0–2 Hour Rainfall Nowcasting Based on Radar and Automatic Weather Station Data
Precipitation has an important impact on people’s daily life and disaster prevention and mitigation. However, it is difficult to provide more accurate results for rainfall nowcasting due to spin-up problems in numerical weather prediction models. Furthermore, existing rainfall nowcasting methods bas...
Autores principales: | Zhang, Fuhan, Wang, Xiaodong, Guan, Jiping, Wu, Meihan, Guo, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998606/ https://www.ncbi.nlm.nih.gov/pubmed/33799726 http://dx.doi.org/10.3390/s21061981 |
Ejemplares similares
-
TAASRAD19, a high-resolution weather radar reflectivity dataset for precipitation nowcasting
por: Franch, Gabriele, et al.
Publicado: (2020) -
Skilful nowcasting of extreme precipitation with NowcastNet
por: Zhang, Yuchen, et al.
Publicado: (2023) -
Hourly rainfall data from rain gauge networks and weather radar up to 2020 across the Hawaiian Islands
por: Huang, Yu-Fen, et al.
Publicado: (2022) -
Publisher Correction: Hourly rainfall data from rain gauge networks and weather radar up to 2020 across the Hawaiian Islands
por: Huang, Yu-Fen, et al.
Publicado: (2022) -
Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather
por: Price, Colin
Publicado: (2008)