Cargando…
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Tra...
Autores principales: | Hemalatha, Jeyaprakash, Roseline, S. Abijah, Geetha, Subbiah, Kadry, Seifedine, Damaševičius, Robertas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998822/ https://www.ncbi.nlm.nih.gov/pubmed/33804035 http://dx.doi.org/10.3390/e23030344 |
Ejemplares similares
-
Android malware detection method based on highly distinguishable static features and DenseNet
por: Yang, Jiyun, et al.
Publicado: (2022) -
Classification of Covid-19 patients using efficient fine-tuned deep learning DenseNet model
por: Bohmrah, Maneet Kaur, et al.
Publicado: (2021) -
CrodenseNet: An efficient parallel cross DenseNet for COVID-19 infection detection
por: Yang, Jingdong, et al.
Publicado: (2022) -
Using deep DenseNet with cyclical learning rate to classify leukocytes for leukemia identification
por: Houssein, Essam H., et al.
Publicado: (2023) -
DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection
por: Girdhar, Nancy, et al.
Publicado: (2022)