Cargando…

Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-Fiber and Polyamide Spiral-Wound Membrane Modules

Pressure-retarded osmosis (PRO) has recently received attention because of its ability to generate power via an osmotic pressure gradient between two solutions with different salinities: high- and low-salinity water sources. In this study, PRO performance, using the two pilot-scale PRO membrane modu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kakihana, Yuriko, Jullok, Nora, Shibuya, Masafumi, Ikebe, Yuki, Higa, Mitsuru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998957/
https://www.ncbi.nlm.nih.gov/pubmed/33671075
http://dx.doi.org/10.3390/membranes11030177
Descripción
Sumario:Pressure-retarded osmosis (PRO) has recently received attention because of its ability to generate power via an osmotic pressure gradient between two solutions with different salinities: high- and low-salinity water sources. In this study, PRO performance, using the two pilot-scale PRO membrane modules with different configurations—five-inch cellulose triacetate hollow-fiber membrane module (CTA-HF) and eight-inch polyamide spiral-wound membrane modules (PA-SW)—was evaluated by changing the draw solution (DS) concentration, applied hydrostatic pressure difference, and the flow rates of DS and feed solution (FS), to obtain the optimum operating conditions in PRO configuration. The maximum power density per unit membrane area of PA-SW at 0.6 M NaCl was 1.40 W/m(2) and 2.03-fold higher than that of CTA-HF, due to the higher water permeability coefficient of PA-SW. In contrast, the maximum power density per unit volume of CTA-SW at 0.6 M NaCl was 4.67 kW/m(3) and 6.87-fold higher than that of PA-SW. The value of CTA-HF increased to 13.61 kW/m(3) at 1.2 M NaCl and was 12.0-fold higher than that of PA-SW because of the higher packing density of CTA-HF.