Cargando…
Approximate Bayesian Computation for Discrete Spaces
Many real-life processes are black-box problems, i.e., the internal workings are inaccessible or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous random variables, likelihood-free inference problems can be solved via Approximate Bayesian Computation...
Autores principales: | Auzina, Ilze A., Tomczak, Jakub M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998962/ https://www.ncbi.nlm.nih.gov/pubmed/33800743 http://dx.doi.org/10.3390/e23030312 |
Ejemplares similares
-
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013) -
Handbook of approximate Bayesian computation
por: Sisson, Scott A, et al.
Publicado: (2018) -
Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
por: Wu, Qianqian, et al.
Publicado: (2014) -
Cophylogeny Reconstruction via an Approximate Bayesian Computation
por: Baudet, C., et al.
Publicado: (2015) -
Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution
por: White, S. R., et al.
Publicado: (2013)