Cargando…
Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020
The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacteria is an environmentally friendly biodegradable polymer. The low yield of PHBV’s production is the main hindrance to its sustainable production, and the manipulation of PHBV production processes could potentially overcom...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999023/ https://www.ncbi.nlm.nih.gov/pubmed/33800467 http://dx.doi.org/10.3390/plants10030503 |
_version_ | 1783670687177637888 |
---|---|
author | Chotchindakun, Kittipat Pathom-Aree, Wasu Dumri, Kanchana Ruangsuriya, Jetsada Pumas, Chayakorn Pekkoh, Jeeraporn |
author_facet | Chotchindakun, Kittipat Pathom-Aree, Wasu Dumri, Kanchana Ruangsuriya, Jetsada Pumas, Chayakorn Pekkoh, Jeeraporn |
author_sort | Chotchindakun, Kittipat |
collection | PubMed |
description | The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacteria is an environmentally friendly biodegradable polymer. The low yield of PHBV’s production is the main hindrance to its sustainable production, and the manipulation of PHBV production processes could potentially overcome this obstacle. The present research investigated evolutionarily divergent cyanobacteria obtained from local environments of Thailand. Among the strains tested, Cyanosarcina sp. AARL T020, a hot spring cyanobacterium, showed a high rate of PHBV accumulation with a fascinating 3-hydroxyvalerate mole fraction. A two-stage cultivation strategy with sole organic carbon supplementation was successful in maximizing cyanobacterial PHBV production. The use of an optimized medium in the first stage of cultivation provided a 4.9-fold increase in biomass production. Subsequently, the addition of levulinic acid in the second stage of cultivation can induce significant biomass and PHBV production. With this strategy, the final biomass production and PHBV productivity were increased by 6.5 and 73.2 fold, respectively. The GC-MS, FTIR, and NMR analyses confirmed that the obtained PHBV consisted of two subunits of 3-hydroxyvaryrate and 3-hydroxybutyrate. Interestingly, the cyanobacterial PHBV contained a very high 3-hydroxyvalerate mole fraction (94%) exhibiting a low degree of crystallinity and expanding in processability window, which could be applied to polymers for desirable advanced applications. |
format | Online Article Text |
id | pubmed-7999023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79990232021-03-28 Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 Chotchindakun, Kittipat Pathom-Aree, Wasu Dumri, Kanchana Ruangsuriya, Jetsada Pumas, Chayakorn Pekkoh, Jeeraporn Plants (Basel) Article The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacteria is an environmentally friendly biodegradable polymer. The low yield of PHBV’s production is the main hindrance to its sustainable production, and the manipulation of PHBV production processes could potentially overcome this obstacle. The present research investigated evolutionarily divergent cyanobacteria obtained from local environments of Thailand. Among the strains tested, Cyanosarcina sp. AARL T020, a hot spring cyanobacterium, showed a high rate of PHBV accumulation with a fascinating 3-hydroxyvalerate mole fraction. A two-stage cultivation strategy with sole organic carbon supplementation was successful in maximizing cyanobacterial PHBV production. The use of an optimized medium in the first stage of cultivation provided a 4.9-fold increase in biomass production. Subsequently, the addition of levulinic acid in the second stage of cultivation can induce significant biomass and PHBV production. With this strategy, the final biomass production and PHBV productivity were increased by 6.5 and 73.2 fold, respectively. The GC-MS, FTIR, and NMR analyses confirmed that the obtained PHBV consisted of two subunits of 3-hydroxyvaryrate and 3-hydroxybutyrate. Interestingly, the cyanobacterial PHBV contained a very high 3-hydroxyvalerate mole fraction (94%) exhibiting a low degree of crystallinity and expanding in processability window, which could be applied to polymers for desirable advanced applications. MDPI 2021-03-08 /pmc/articles/PMC7999023/ /pubmed/33800467 http://dx.doi.org/10.3390/plants10030503 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Chotchindakun, Kittipat Pathom-Aree, Wasu Dumri, Kanchana Ruangsuriya, Jetsada Pumas, Chayakorn Pekkoh, Jeeraporn Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title | Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title_full | Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title_fullStr | Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title_full_unstemmed | Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title_short | Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020 |
title_sort | low crystallinity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioproduction by hot spring cyanobacterium cyanosarcina sp. aarl t020 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999023/ https://www.ncbi.nlm.nih.gov/pubmed/33800467 http://dx.doi.org/10.3390/plants10030503 |
work_keys_str_mv | AT chotchindakunkittipat lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 AT pathomareewasu lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 AT dumrikanchana lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 AT ruangsuriyajetsada lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 AT pumaschayakorn lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 AT pekkohjeeraporn lowcrystallinityofpoly3hydroxybutyrateco3hydroxyvaleratebioproductionbyhotspringcyanobacteriumcyanosarcinaspaarlt020 |