Cargando…

Cellular Energetics of Mast Cell Development and Activation

Mast cells are essential first responder granulocytes in the innate immune system that are well known for their role in type 1 immune hypersensitivity reactions. Although mostly recognized for their role in allergies, mast cells have a range of influences on other systems throughout the body and can...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendoza, Ryan P., Fudge, Dylan H., Brown, Jared M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999080/
https://www.ncbi.nlm.nih.gov/pubmed/33801300
http://dx.doi.org/10.3390/cells10030524
Descripción
Sumario:Mast cells are essential first responder granulocytes in the innate immune system that are well known for their role in type 1 immune hypersensitivity reactions. Although mostly recognized for their role in allergies, mast cells have a range of influences on other systems throughout the body and can respond to a wide range of agonists to properly prime an appropriate immune response. Mast cells have a dynamic energy metabolism to allow rapid responsiveness to their energetic demands. However, our understanding of mast cell metabolism and its impact on mast cell activation and development is still in its infancy. Mast cell metabolism during stimulation and development shifts between both arms of metabolism: catabolic metabolism—such as glycolysis and oxidative phosphorylation—and anabolic metabolism—such as the pentose phosphate pathway. The potential for metabolic pathway shifts to precede and perhaps even control activation and differentiation provides an exciting opportunity to explore energy metabolism for clues in deciphering mast cell function. In this review, we discuss literature pertaining to metabolic environments and fluctuations during different sources of activation, especially IgE mediated vs. non-IgE mediated, and mast cell development, including progenitor cell types leading to the well-known resident mast cell.