Cargando…

Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder †

A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important sce...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirasawa, Kaito, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999231/
https://www.ncbi.nlm.nih.gov/pubmed/33799412
http://dx.doi.org/10.3390/s21062045
Descripción
Sumario:A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important scenes are detected by estimating the probability of the scene being important from estimated latent features. It should be noted that there exist time-lags between tweets posted by users and videos. To consider the time-lags between tweet features and other features calculated from corresponding multiple previous events, the feature transformation based on feature correlation considering such time-lags is newly introduced to the encoder in MVAE in the proposed method. This is the biggest contribution of the Tl-MVAE. Experimental results obtained from actual baseball videos and their corresponding tweets show the effectiveness of the proposed method.